Abstract

We study spatially isolated, individual gold nanorods placed at a planar interface between two dielectric media using confocal interference scattering microscopy in combination with higher order laser modes. Approaching refractive index matching conditions, we observe that the elastic scattering patterns of individual nanorods exhibit an exponential increase of both the scattering intensity and the signal-to-background ratio. In case refractive index matching conditions are fullfilled, the data acquisition rates are maximized and suitable for in-vivo biological measurements. In all cases, the characteristic two-lobe shape of the scattering patterns of single nanorods remains unchanged while the sign of the image contrast is a direct consequence of the refractive index variation occurring at the interface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  2. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  3. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
    [CrossRef]
  4. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
    [CrossRef]
  5. K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
    [CrossRef] [PubMed]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
    [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  8. F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
    [CrossRef]
  9. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
    [CrossRef]
  10. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express 13, 2668-2677 (2005).
    [CrossRef] [PubMed]
  11. J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
    [CrossRef]
  12. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, "Multiphoton plasmon-resonance microscopy," Opt. Express 11, 1385-1391 (2003).
    [CrossRef] [PubMed]
  13. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
    [CrossRef] [PubMed]
  14. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
    [CrossRef] [PubMed]
  15. H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007).
    [CrossRef] [PubMed]
  16. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
    [CrossRef]
  17. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
    [CrossRef]
  18. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
    [CrossRef] [PubMed]
  19. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  20. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
    [CrossRef]
  21. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).
  22. C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
    [CrossRef] [PubMed]
  23. F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).
  24. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express 14, 405-414 (2006).
    [CrossRef] [PubMed]
  25. O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
    [CrossRef]
  26. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
    [CrossRef] [PubMed]
  27. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
    [CrossRef]
  28. A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
    [CrossRef] [PubMed]
  29. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Bios Scientific Publishers, London, 1997).
  30. C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).
  31. T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
    [CrossRef] [PubMed]
  32. A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007).
    [CrossRef] [PubMed]
  33. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
    [CrossRef]
  34. B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003).
    [CrossRef]
  35. B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001).
    [CrossRef]
  36. G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Phys. 25, 377-445 (1908).
    [CrossRef]
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, 1983).
  38. M. Born and E. Wolf. Principles of optics (Pergamon Pr., Oxford,1964).
  39. S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
    [CrossRef] [PubMed]
  40. E. J. Botcherby, R. Ju¡skaitis, M. J. Booth, and T. Wilson, "Aberration-free optical refocusing in high numerical aperture microscopy," Opt. Lett. 32, 2007-2009 (2007).
    [CrossRef] [PubMed]
  41. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
    [CrossRef] [PubMed]

2008

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
[CrossRef]

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

2007

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007).
[CrossRef] [PubMed]

E. J. Botcherby, R. Ju¡skaitis, M. J. Booth, and T. Wilson, "Aberration-free optical refocusing in high numerical aperture microscopy," Opt. Lett. 32, 2007-2009 (2007).
[CrossRef] [PubMed]

H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007).
[CrossRef] [PubMed]

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

2006

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express 14, 405-414 (2006).
[CrossRef] [PubMed]

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

2005

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express 13, 2668-2677 (2005).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

2004

F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
[CrossRef]

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

2003

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, "Multiphoton plasmon-resonance microscopy," Opt. Express 11, 1385-1391 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).

2002

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

2001

B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001).
[CrossRef]

2000

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

1999

S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
[CrossRef]

1991

C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).

1908

G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Alivisatos, A. P.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

Baro, A. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Berciaud, S.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).

Billaud, P.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Blab, G. A.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

Botcherby, E. J.

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
[CrossRef]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Browning, L. M.

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Broyer, M.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Brunner, C.

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Chilkoti, A.

Cognet, L.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

Colchero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Cremer, C.

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Curry, A.

Debus, C.

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
[CrossRef]

Del Fatti, N.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
[CrossRef]

Failla, A. V.

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
[CrossRef]

A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007).
[CrossRef] [PubMed]

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Failla, A.V.

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Fernandez, R.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Gearheart, L.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

Gomez-Herrero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Gomez-Rodriguez, J. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Gong, Y.

C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).

Håkanson, U.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Halas, N.

F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
[CrossRef]

Hartschuh, A.

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Hess, H.

H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007).
[CrossRef] [PubMed]

Horcas, I.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Huntzinger, J. R.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Ignatovich, F. V.

F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).

Jacobsen, V.

Jäger, S. W.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

Jana, N. R.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Lee, K. J.

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
[CrossRef]

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

Lounis, B.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Martin, S.

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Meixner, A. J.

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
[CrossRef]

A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007).
[CrossRef] [PubMed]

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Mie, G.

G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
[CrossRef]

Moran, C.

F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
[CrossRef]

Moses, E.

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Murphy, C. J.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Nallathamby, P. D.

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
[CrossRef]

F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).

Nusz, G.

Orendorff, C. J.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

Oron, D.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Osgood, C. J.

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Pombo, A.

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Qian, H.

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Sandoghdar, V.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Schult, S.

J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).

Silberberg, Y.

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Spöri, U.

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Steiner, M.

Stoller, P.

Tam, F.

F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
[CrossRef]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Thiberge, S.

Tseng, Y.

H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007).
[CrossRef] [PubMed]

Vallée, F.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Vogel, V.

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Wax, A.

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Xu, X. -H. N.

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Yelin, D.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Züchner, T.

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007).
[CrossRef] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

ACS Nano

H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007).
[CrossRef] [PubMed]

K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Appl. Phys. Lett.

O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006).
[CrossRef]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

J. Chem. Phys.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002).
[CrossRef]

J. Microsc.

T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008).
[CrossRef] [PubMed]

J. Mod. Opt.

F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).

J. Phys. Chem. B

S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004).
[CrossRef]

J. Phys. Chem. C

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008).
[CrossRef]

Langmuir

B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001).
[CrossRef]

Mol. Biol. Cell.

S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004).
[CrossRef] [PubMed]

Nano Lett.

J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Nature Biotech.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).

Phys. Chem. Chem. Phys.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003).
[CrossRef]

Phys. Rev. Lett

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).

Phys. Rev. Lett.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004).
[CrossRef]

PNAS

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005).
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007).
[CrossRef] [PubMed]

Science

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Other

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Bios Scientific Publishers, London, 1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, 1983).

M. Born and E. Wolf. Principles of optics (Pergamon Pr., Oxford,1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) AFM image of a single, spatially isolated Au nanorod as spin coated from aqueous solution on a microscope cover slip. (b) Cross sections taken along the dashed lines in (a). (c) Extinction spectrum of the nanorod solution exhibiting the plasmon resonances along the short and long axis b and a, respectively. The fit (dashed line) to the experimental spectrum (solid line) is used to determine the average aspect ratio R=a/b=2.6 of the nanorods in solution [33].

Fig. 2.
Fig. 2.

Schematic of the optical setup. MC: Mode converter, L: Lens, SF: Spatial filter, BS: Beam splitter, MO: Microscope objective, SC: (x,y)-Scanning stage, S: Sample, APD: Avalanche photodiode. (Inset (I)) (a) Representative experimental scattering pattern of a gold nanorod excited at λ=633 nm with an azimuthally polarized doughnut mode (APDM). (b) Reconstruction of the pattern shown in (a) obtained by fitting the experimental data with a model function. (c) Simulated theoretical scattering pattern of the same particle. (Inset (II)) Visualization of the intensity distribution and the polarization orientation (arrows) in the collimated laser excitation beam.

Fig. 3.
Fig. 3.

Experimental (a-c) and corresponding simulated (g-i) scattering patterns of the same set of individual, spatially isolated gold nanorods (aspect ratio R=2.6, excited with an APDM at λ=633 nm) imaged for three different interfaces as indicated in the schematics on top. (d-f) Scattering intensity profiles taken along the lines in (a), (b) and (c), respectively. The simulations account for the contrast of the experimental scattering patterns.

Fig. 4.
Fig. 4.

Measured background intensity |E r |2 as a function of the laser excitation power (λ=633 nm) for the three different interfaces glass-air (squares), glass-water (circles) and glass-oil (triangles) according to the schematics in Fig. 3. The lines represent linear fits to the respective data sets. (Inset) Relative nanorod scattering intensity (|E s |/|E r |)2 (normalized with respect to (|E s |/|E r |)2 for n 2=1, see also Eq. 1) as a function of the refractive index n 2.

Fig. 5.
Fig. 5.

Integrated scattering intensity of a gold nanorod as function of the aspect ratio R=a/b calculated for the excitation wavelength 633 nm assuming a constant nanorod width b of 15 nm as well as refractive index matching conditions n 2=n 1 (i.e the particle is located at a glass-oil interface, see also Fig. 3). (Insets) Corresponding scattering patterns of gold nanorods simulated for R=2.5, 4 and 7, respectively. The intensity scale provided by the underlying color map is optimized for R=7 and kept constant in all three images.

Fig. 6.
Fig. 6.

Schematic of a sample with individual, spatially isolated gold nanorods attached to a lower (glass-water) and an upper (water-glass) interface with respect to the optical setup as sketched in Fig. 2. (Inset (I)/(II)) The corresponding experimental scattering patterns measured for single nanorods (excitation with an APDM at λ=633 nm) at the lower/upper interface show negative/positive contrast. The intensity scale provided by the underlying color map is optimized for each image separately.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I APD E r + E s 2 = E r 2 + E s 2 + 2 E s E r cos ϕ
I Nano = I APD I BKG = 2 E s E r cos ϕ if E r E s
I Nano = E s 2 if E s E r
I Nano = 2 E s E r cos ϕ + E s 2 if E s E r .

Metrics