Abstract

We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3° by 11° output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Nykola, G. Raybon, B. Mikkelsen, B. Brown, P. F. Szajowski, J. J. Auborn, and H. M. Presby, "A 160 Gb/s free space transmission link" in Proceedings of Conference on Lasers and Electro-optics, (Washington, D.C., 2000), pp. 687-688.
  2. M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere." IEEE Photon. Technol. Lett. 16, 2395-2397 (2004).
    [CrossRef]
  3. L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
    [CrossRef]
  4. V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
    [CrossRef]
  5. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, Hoboken, 2003), Chap. 8.
  6. B. Winker, M. Mahajan, and M. Hunwardsen, "Liquid crystal beam directors for airborne free-space optical communications," in 2004 IEEE Aerospace Conference Proceedings, (Big Sky. Montana, March 2004).
  7. I. Filinski and T. Skettrup, "Fast dispersive beam deflectors and modulators," IEEE J. Quantum Electron. 18, 1059-1062 (1982).
    [CrossRef]
  8. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radik, C. F. Marki, and J. E. Ford, "1092 channel 2-D array demultiplexer for ultralarge data bandwidth," J. Lightwave Technol. 25, 719-725 (2007).
    [CrossRef]
  9. J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
    [CrossRef]
  10. M. Shirasaki, "Virtually imaged phased array," Fujitsu Sci. Tech. J. 35, 113-125 (1999).

2007 (1)

2006 (2)

L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
[CrossRef]

V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
[CrossRef]

2004 (1)

M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere." IEEE Photon. Technol. Lett. 16, 2395-2397 (2004).
[CrossRef]

2003 (1)

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

1999 (1)

M. Shirasaki, "Virtually imaged phased array," Fujitsu Sci. Tech. J. 35, 113-125 (1999).

1982 (1)

I. Filinski and T. Skettrup, "Fast dispersive beam deflectors and modulators," IEEE J. Quantum Electron. 18, 1059-1062 (1982).
[CrossRef]

Alic, N.

Bhardwaj, A.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Chan, T. K.

Cole, M.

M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere." IEEE Photon. Technol. Lett. 16, 2395-2397 (2004).
[CrossRef]

Filinski, I.

I. Filinski and T. Skettrup, "Fast dispersive beam deflectors and modulators," IEEE J. Quantum Electron. 18, 1059-1062 (1982).
[CrossRef]

Ford, J. E.

Gripp, J.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Jiang, R.

Kahn, J. M.

L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
[CrossRef]

Karp, J.

Khandekar, R.

V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
[CrossRef]

Kiasaleh, K.

M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere." IEEE Photon. Technol. Lett. 16, 2395-2397 (2004).
[CrossRef]

Marki, C. F.

Nikulin, V.

V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
[CrossRef]

Pister, K. S. J.

L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
[CrossRef]

Radik, S.

Sherman, K.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Shirasaki, M.

M. Shirasaki, "Virtually imaged phased array," Fujitsu Sci. Tech. J. 35, 113-125 (1999).

Simsarian, J. E.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Skettrup, T.

I. Filinski and T. Skettrup, "Fast dispersive beam deflectors and modulators," IEEE J. Quantum Electron. 18, 1059-1062 (1982).
[CrossRef]

Sofka, J.

V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
[CrossRef]

Su, Y.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Webb, C.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Zhang, L.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Zhou, L.

L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
[CrossRef]

Zirngibl, M.

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

Fujitsu Sci. Tech. J. (1)

M. Shirasaki, "Virtually imaged phased array," Fujitsu Sci. Tech. J. 35, 113-125 (1999).

IEEE J. Quantum Electron. (1)

I. Filinski and T. Skettrup, "Fast dispersive beam deflectors and modulators," IEEE J. Quantum Electron. 18, 1059-1062 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. E. Simsarian, A. Bhardwaj, J. Gripp, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, "Fast switching characteristics of a widely tunable laser transmitter," IEEE Photon. Technol. Lett. 15, 1038-1040 (2003).
[CrossRef]

M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere." IEEE Photon. Technol. Lett. 16, 2395-2397 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

L. Zhou, J. M. Kahn, and K. S. J. Pister, "Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process," J. Microelectromech. Syst. 15, 24-32 (2006).
[CrossRef]

Proc. SPIE (1)

V. Nikulin, R. Khandekar, and J. Sofka, "Performance of a laser communication system with acousto-optic tracking: An experimental study," Proc. SPIE 6105, 61050C, (2006).
[CrossRef]

Other (3)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, Hoboken, 2003), Chap. 8.

B. Winker, M. Mahajan, and M. Hunwardsen, "Liquid crystal beam directors for airborne free-space optical communications," in 2004 IEEE Aerospace Conference Proceedings, (Big Sky. Montana, March 2004).

G. Nykola, G. Raybon, B. Mikkelsen, B. Brown, P. F. Szajowski, J. J. Auborn, and H. M. Presby, "A 160 Gb/s free space transmission link" in Proceedings of Conference on Lasers and Electro-optics, (Washington, D.C., 2000), pp. 687-688.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

2 diffraction gratings oriented to achieve beamscanning in 2 dimensions. The difference in diffraction orders between the two diffractive structures allows for raster scanning as the wavelength is increased.

Fig. 2.
Fig. 2.

System and components used to demonstrate beamscanning. The demultiplexed channels from the AWG are ejected into free space by a V-groove array which sits at the focal plane of a Fourier lens. This lens is part of a free space grating demultiplexer which separates the multiple orders from the AWG. The output is focused at the focal plane of a microscope objective which collimates and directs the light.

Fig. 3.
Fig. 3.

2-dimensional illustration of a monochromatic beam propagating through the system.

Fig. 4.
Fig. 4.

Calculated output angles from the beam scanner.

Fig. 5.
Fig. 5.

Photograph of the beam scanner with a tunable laser acting as the optical source.

Fig. 6.
Fig. 6.

An ASE optical source is used to send power towards every achievable direction of the beam scanner. The camera is saturated to show all spots.

Fig. 7.
Fig. 7.

(a). The output of a single wavelength and b) its profile immediately exiting the beamscanner.

Fig. 8.
Fig. 8.

Transient response when switching between two directions.

Fig. 9.
Fig. 9.

A VIPA with the virtual line sources illustrated.

Fig. 10.
Fig. 10.

Beam scanner consisting of a VIPA and a free-space optical grating demultiplexer.

Fig. 11.
Fig. 11.

A section of the output of a 2D demultiplexer which uses a) a 1 mm thick VIPA and b) a 0.1 mm thick VIPA. Spots created at 1553 nm are circled and show degeneracy through multiple diffraction orders when the VIPA is too thick. For secure FSO communications, only one diffraction order should exist.

Fig. 12.
Fig. 12.

Calculated output directions (in degrees) using a VIPA in the beam scanner.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P ( sin θ m sin θ i ) = m λ
m = n awg Δ L λ m
FSR = λ m λ m + 1 = λ m m + 1
n awg P awg ( sin θ m sin θ i ) + n awg Δ L = m λ m
λ m = n awg m ( Δ L P awg sin θ i ) + n awg P awg m sin θ m
λ N , m = λ c + n awg P awg m sin [ θ o ( N N max + 1 2 ) ]
N = sin 1 [ m ( λ N , m λ c ) n awg P awg ] θ o + N max + 1 2
tan θ 1 = P V ( N N max + 1 2 ) f o
tan θ 2 = f f o tan [ sin 1 ( m λ P g + sin θ g ) + θ g ]
m v λ 2 t v n v = sin ( π 2 + θ o θ v )
θ o = θ v π 2 + sin 1 ( m v λ 2 t v n v )
tan 1 ( 2 f # ) < sin 1 ( m v λ 2 t v n v ) sin 1 ( ( m v 1 ) λ 2 t v n v )

Metrics