Abstract

The nonlinear absorption (NLA) properties of copper ph-thalocyanine (CuPc)-doped polymethylmethacrylate (PMMA) thin film in the femtosecond regime were investigated both experimentally and theoretically. The open-aperture (OA) Z-scan measurements of the film were carried out by femtosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity is increased. The rate equation analysis based on an developed efficient energy level model was performed and the intensity dependence of level populations was obtained, which reveals the source of NLA. The results show that the transition from SA to RSA is ascribed to the fifth-order effect of excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Furthermore, it is found that the CuPc-doped PMMA thin film possesses a large fifth-order coefficient (β (5)) of 0.24×10-21 cm 3/W 2. It indicates that the CuPc-doped PMMA thin film could be a promising candidate for optical limiting material.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
    [CrossRef]
  2. O. Wada, "Femtosecond all-optical devices for ultrafast communication and signal processing," New J. Phys. 6, 183 (2004).
    [CrossRef]
  3. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
    [CrossRef]
  4. R. Hagen and T. Bieringer, "Photoaddressable Polymers for Optical Data Storage," Adv. Mater. 13, 1805-1810 (2001).
    [CrossRef]
  5. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, "Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser," Opt. Lett. 27, 1348-1350 (2002).
    [CrossRef]
  6. M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
    [CrossRef]
  7. A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
    [CrossRef]
  8. G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
    [CrossRef] [PubMed]
  9. J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
    [CrossRef]
  10. N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
    [CrossRef]
  11. M. C. Larciprete, R. Ostuni, A. Belardini, M. Alonzo, G. Leahu, E. Fazio, C. Sibilia, and M. Bertolotti, "Nonlinear optical absorption of zinc-phthalocyanines in polymeric matrix," Photonics and Nanostructures - Fundamentals and Applications 5, 73-78 (2007).
    [CrossRef]
  12. C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
    [CrossRef] [PubMed]
  13. T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
    [CrossRef]
  14. L. Edwards and M. Gouterman, "Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines," J. Mol. Spectrosc. 33, 292-310 (1970).
    [CrossRef]
  15. F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
    [CrossRef]
  16. T. Basova et al., "Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF16," Surf. Sci. (2008), doi:10.1016/j.susc.2008.04.044.
    [CrossRef]
  17. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  18. G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
    [CrossRef]
  19. M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
    [CrossRef]
  20. S. M. OFlaherty, S. V. Hold, Y. Chen, M. Hanack, and W. J. Blau, "Reverse saturable absorption based optical limiting properties of Indium and Gallium phthalocyanines and naphthalocyanines," Proc. SPIE 4991, 183 (2003).
    [CrossRef]
  21. S. Hughes, G. Spruce, J. M. Burzler, R. Rangel-Rojo, and B. S. Wherrett, "Theoretical analysis of the picosecond, induced absorption exhibited by chloroaluminum phthalocyanine," J. Opt. Soc. Am. B 14, 400-404 (1997).
    [CrossRef]
  22. N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2471 (2003).
  23. T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
    [CrossRef]
  24. R. L. Sutherland, M. C. Brant, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, "Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull change-transfer chromophores," J. Opt. Soc. Am. B 22, 1939 (2005).
    [CrossRef]
  25. J. M. Nunzi and F. Charra, "Intensity-dependent Two-photon-enhanced degenerate nonlinearity of polydiacetylene," Nonlin. Opt. 1, 19-30 (1991).
  26. J. M. Nunzi and F. Charra, "Picosecond two-photon absorption effects on index variation gratings in polydiacetylenes," Nonlin. Opt. 2, 131-148 (1992).
  27. A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
    [CrossRef]
  28. T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
    [CrossRef]
  29. M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
    [CrossRef]
  30. C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
    [CrossRef] [PubMed]
  31. S. Venugopal Rao, S. Singh, B. S. DeCristofano, and D. Narayana Rao, "Theoretical and experimental study of the excited state dynamics in reverse saturable absorbers using Z-scan technique," http://www.standrews. ac.uk/ scnlo/icol.pdf.
  32. B. Aneeshkumar, P. Gopinath, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Optical-limiting response of rare-earth metallophthalocyanine-doped copolymer matrix," J. Opt. Soc. Am. B 20, 1486 (2003).
    [CrossRef]

2008 (4)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

T. Basova et al., "Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF16," Surf. Sci. (2008), doi:10.1016/j.susc.2008.04.044.
[CrossRef]

2006 (2)

A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
[CrossRef]

A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
[CrossRef]

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

2005 (2)

2004 (2)

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

O. Wada, "Femtosecond all-optical devices for ultrafast communication and signal processing," New J. Phys. 6, 183 (2004).
[CrossRef]

2003 (3)

S. M. OFlaherty, S. V. Hold, Y. Chen, M. Hanack, and W. J. Blau, "Reverse saturable absorption based optical limiting properties of Indium and Gallium phthalocyanines and naphthalocyanines," Proc. SPIE 4991, 183 (2003).
[CrossRef]

N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2471 (2003).

B. Aneeshkumar, P. Gopinath, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Optical-limiting response of rare-earth metallophthalocyanine-doped copolymer matrix," J. Opt. Soc. Am. B 20, 1486 (2003).
[CrossRef]

2002 (3)

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, "Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser," Opt. Lett. 27, 1348-1350 (2002).
[CrossRef]

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

2001 (2)

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

R. Hagen and T. Bieringer, "Photoaddressable Polymers for Optical Data Storage," Adv. Mater. 13, 1805-1810 (2001).
[CrossRef]

1999 (1)

T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
[CrossRef]

1997 (1)

1996 (1)

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

1995 (3)

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

1994 (2)

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

1992 (1)

J. M. Nunzi and F. Charra, "Picosecond two-photon absorption effects on index variation gratings in polydiacetylenes," Nonlin. Opt. 2, 131-148 (1992).

1991 (1)

J. M. Nunzi and F. Charra, "Intensity-dependent Two-photon-enhanced degenerate nonlinearity of polydiacetylene," Nonlin. Opt. 1, 19-30 (1991).

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1970 (1)

L. Edwards and M. Gouterman, "Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines," J. Mol. Spectrosc. 33, 292-310 (1970).
[CrossRef]

Agullo-Lopez, F.

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

Andraud, C.

Aneeshkumar, B.

Baldeck, P. L.

Barthel, M.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

Basova, T.

T. Basova et al., "Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF16," Surf. Sci. (2008), doi:10.1016/j.susc.2008.04.044.
[CrossRef]

Bedworth, P. V.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

Bieringer, T.

R. Hagen and T. Bieringer, "Photoaddressable Polymers for Optical Data Storage," Adv. Mater. 13, 1805-1810 (2001).
[CrossRef]

Bouriau, M.

Brant, M. C.

Burzler, J. M.

Charra, F.

J. M. Nunzi and F. Charra, "Picosecond two-photon absorption effects on index variation gratings in polydiacetylenes," Nonlin. Opt. 2, 131-148 (1992).

J. M. Nunzi and F. Charra, "Intensity-dependent Two-photon-enhanced degenerate nonlinearity of polydiacetylene," Nonlin. Opt. 1, 19-30 (1991).

Chen, C. T.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Chen, Z.

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Dai, N.

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

de la Torre, G.

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

Dillard, A. G.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

Dini, D.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

Drobizhev, M.

M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
[CrossRef]

Edwards, L.

L. Edwards and M. Gouterman, "Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines," J. Mol. Spectrosc. 33, 292-310 (1970).
[CrossRef]

Fakis, M.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Fleitz, P. A.

Giannetas, V.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Giribabu, L.

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

Gopinath, P.

Gouterman, M.

L. Edwards and M. Gouterman, "Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines," J. Mol. Spectrosc. 33, 292-310 (1970).
[CrossRef]

Hagan, D. J.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hagen, R.

R. Hagen and T. Bieringer, "Photoaddressable Polymers for Optical Data Storage," Adv. Mater. 13, 1805-1810 (2001).
[CrossRef]

Hanack, M.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

He, G. S.

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

Huang, T. H.

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

Huang, T.-H.

T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
[CrossRef]

Hughes, S.

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

Lee, I. Y. S.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Li, C.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Li, F.

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

Lin, H. D.

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

Lin, S. H.

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

Lin, T. C.

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

Lu, H.

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Lu, P.

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

Mansour, K.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Martineau, C.

McLean, D. G.

Mikroyannidis, J.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Naga Srinivas, N. K. M.

N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2471 (2003).

Nampoori, V. P. N.

Narayana Rao, D.

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2471 (2003).

Nunzi, J. M.

J. M. Nunzi and F. Charra, "Picosecond two-photon absorption effects on index variation gratings in polydiacetylenes," Nonlin. Opt. 2, 131-148 (1992).

J. M. Nunzi and F. Charra, "Intensity-dependent Two-photon-enhanced degenerate nonlinearity of polydiacetylene," Nonlin. Opt. 1, 19-30 (1991).

Perry, J. W.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Persphonis, P.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Polyzos, I.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Prasad, P. N.

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

Radhakrishnan, P.

Rangel-Rojo, R.

Rebane, A.

M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
[CrossRef]

Reinhardt, B. A.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

Roderer, P.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

Rogers, J. E.

Said, A. A.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Santhi, A.

A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Si, J.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

Slagle, J. E.

Spangler, C.W.

M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
[CrossRef]

Spiliopoulos, I.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Spruce, G.

Suo, Z.

M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
[CrossRef]

Sutherland, R. L.

Torres, T.

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

Tsigaridas, G.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Vaaquez, P.

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

Vagin, S.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

Vallabhan, C. P. G.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Van Stryland, E.W.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

Venkatram, N.

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

Venugopal Rao, S.

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

N. K. M. Naga Srinivas, S. Venugopal Rao, and D. Narayana Rao, "Saturable and reverse saturable absorption of Rhodamine B in methanol and water," J. Opt. Soc. Am. B 20, 2471 (2003).

Vinu, A.

A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
[CrossRef]

Wamsley, C.

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

Wang, H.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Wang, I.

Wang, R.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

Wang, W.

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Wang, Y.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Wei, T. H.

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Wei, T.-H.

T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
[CrossRef]

Wen, T.-C.

T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
[CrossRef]

Wherrett, B. S.

Wu, X.

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Yan, L.

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Yang, G.

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

Yang, M.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Zhang, L.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Zhao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

Zheng, Q.

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

Adv. Mater. (1)

R. Hagen and T. Bieringer, "Photoaddressable Polymers for Optical Data Storage," Adv. Mater. 13, 1805-1810 (2001).
[CrossRef]

Appl. Phys. B (1)

N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao, "Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation," Appl. Phys. B 91, 149-156 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433 (1995).
[CrossRef]

T. H. Wei, T. H. Huang, H. D. Lin, and S. H. Lin, "Lifetime determination for high-lying excited states using Z scan," Appl. Phys. Lett. 67, 2266 (1995).
[CrossRef]

Chem. Phys. Lett. (3)

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, "Intensity dependent nonlinear absorption of pyrylium chromophores," Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

A. A. Said, C. Wamsley, D. J. Hagan, E.W. Van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, "Thirdand fifth-order optical nonlinearities in organic materials," Chem. Phys. Lett. 228, 646 (1994).
[CrossRef]

T.-H. Wei, T.-H. Huang, and T.-C. Wen, "Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan," Chem. Phys. Lett. 314, 403-410 (1999).
[CrossRef]

Chem. Record. (1)

M. Hanack, D. Dini, M. Barthel, and S. Vagin, "Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical limiting effect with phthalocyanines and related compounds," Chem. Record. 2, 129-148 (2002).
[CrossRef]

Chem. Rev. (1)

G. de la Torre, P. Vaaquez, F. Agullo-Lopez, and T. Torres, "Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds," Chem. Rev. 104, 3723 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. Appl. Phys. (1)

A. Santhi, V. V. Namboodiri, P. Radhakrishnan, and V. P. N. Nampoori, "Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine," J. Appl. Phys. 100, 053109 (2006).
[CrossRef]

J. Lumin. (1)

M. Drobizhev, A. Rebane, Z. Suo, and C.W. Spangler, "One-, two- and three-photon spectroscopy of -conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291 (2005).
[CrossRef]

J. Mater. Chem. (1)

T. C. Lin, G. S. He, Q. Zheng, and P. N. Prasad, "Degenerate two-/three-photon absorption and optical powerlimiting properties in femtosecond regime of a multi-branched chromophore," J. Mater. Chem. 162490 (2006).
[CrossRef]

J. Mol. Spectrosc. (1)

L. Edwards and M. Gouterman, "Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines," J. Mol. Spectrosc. 33, 292-310 (1970).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nature Photon. (1)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity," Nat. Photon. 2, 185 (2008).
[CrossRef]

New J. Phys. (1)

O. Wada, "Femtosecond all-optical devices for ultrafast communication and signal processing," New J. Phys. 6, 183 (2004).
[CrossRef]

Nonlin. Opt. (2)

J. M. Nunzi and F. Charra, "Intensity-dependent Two-photon-enhanced degenerate nonlinearity of polydiacetylene," Nonlin. Opt. 1, 19-30 (1991).

J. M. Nunzi and F. Charra, "Picosecond two-photon absorption effects on index variation gratings in polydiacetylenes," Nonlin. Opt. 2, 131-148 (1992).

Opt. Commun. (1)

G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, and Z. Chen, "Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates," Opt. Commun. 209, 445-449 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, "Excited-state nonlinear absorption in multi-energy-level molecular systems," Phys. Rev. A 51, 569-575 (1995).
[CrossRef] [PubMed]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behavior of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Physica B (1)

F. Li, Q. Zheng, G. Yang, N. Dai, and P. Lu, "Spectrum of copper phthalocyanine: Experiments and semiempirical quantum chemical calculations" Physica B 403, 1704-1707 (2008).
[CrossRef]

Proc. SPIE (1)

S. M. OFlaherty, S. V. Hold, Y. Chen, M. Hanack, and W. J. Blau, "Reverse saturable absorption based optical limiting properties of Indium and Gallium phthalocyanines and naphthalocyanines," Proc. SPIE 4991, 183 (2003).
[CrossRef]

Science (1)

J. W. Perry, K. Mansour, I. Y. S. Lee, X. Wu, P. V. Bedworth, C. T. Chen,  et al. "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533 (1996).
[CrossRef]

Surf. Sci. (1)

T. Basova et al., "Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF16," Surf. Sci. (2008), doi:10.1016/j.susc.2008.04.044.
[CrossRef]

Other (2)

M. C. Larciprete, R. Ostuni, A. Belardini, M. Alonzo, G. Leahu, E. Fazio, C. Sibilia, and M. Bertolotti, "Nonlinear optical absorption of zinc-phthalocyanines in polymeric matrix," Photonics and Nanostructures - Fundamentals and Applications 5, 73-78 (2007).
[CrossRef]

S. Venugopal Rao, S. Singh, B. S. DeCristofano, and D. Narayana Rao, "Theoretical and experimental study of the excited state dynamics in reverse saturable absorbers using Z-scan technique," http://www.standrews. ac.uk/ scnlo/icol.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The linear absorption spectra for (a) the mixed solution and (b) the CuPc-doped PMMA thin film.

Fig. 2.
Fig. 2.

Four-level diagram for describing the NLA in the femtosecond regime: S 0, the ground state, S 1,2,n, excited singlet states; β, TPA coefficient; σ 0, ground-state absorption cross section, σ 1 and σ 2, excited state absorption cross sections from states S1 and S2, respectively; τ1,2,3, excited states lifetimes of S1,2,n, respectively.

Fig. 3.
Fig. 3.

OA z-scan experimental curves (a) to (j) orderly correspond to the curve when increasing and decreasing the intensity. Scattered data are experimental results and solid red lines are theoretical fittings.

Fig. 4.
Fig. 4.

Intensity dependence of NLA coefficient for the CuPc-doped PMMA thin film. The solid line is guide to the eye.

Fig. 5.
Fig. 5.

Populations in S 0, S 1, S 2 and S n versus the time during a single light pulse with a width of 50 fs under four excitation intensities: (a) I=2.83×1012 W/cm2, (b) I=10.6×1012 W/cm2, (c) I=13.4×1012 W/cm2, (d) I=19.8×1012 W/cm2.

Fig. 6.
Fig. 6.

Transient transmissions versus the time during a single laser pulse with a width of 50 fs under six different excitation intensities: (a) I=2.83×1012 W/cm2, (b) I=5.66×1012 W/cm2, (c) I=10.6×1012 W/cm2, (d) I=13.4×1012 W/cm2, (e) I=17.0×1012 W/cm2, (f) I=19.8×1012 W/cm2.

Fig. 7.
Fig. 7.

Optical-limiting behavior of the CuPc-doped PMMA thin film for excitation by (a) increasing and (b) decreasing the intensity, keeping the same position on the sample. The laser used is 50 fs pulse duration and 1 kHz repetition rate with 800 nm wavelength. The straight line represents the linear transmission (LT) of the sample (LT=79%).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d I d z = α I ,
α = α 0 + β ( 3 ) I + β ( 5 ) I 2 ,
Δ α I = β ( 3 ) + β ( 5 ) I .
d n 0 d t = σ 0 I n 0 h v + n 1 τ 1 β ( 3 ) I 2 2 h v ,
d n 1 d t = σ 0 I n 0 h v σ 1 I n 1 h v n 1 τ 1 + n 2 τ 2 ,
d n 2 d t = σ 1 I n 1 h v σ 2 I n 2 h v n 2 τ 2 + n 3 τ 3 + β ( 3 ) I 2 2 h v ,
d n 3 d t = σ 2 I n 2 h v n 3 τ 3 .
d I d z = α I = ( β ( 3 ) I + σ 2 N 2 ) I = β ( 3 ) I 2 σ 2 β ( 3 ) τ 2 h v I 3 ,
I = I 0 ω 0 2 ω 2 ( z ) exp ( t 2 τ p 2 ) exp ( 2 r 2 ω 2 ( z ) ) .
β ( 5 ) = σ 2 β ( 3 ) τ 2 h v .
T ( z ) = m = 0 [ Δ α I 0 L eff ( 1 + z 2 z 0 2 ) ] m ( m + 1 ) 3 2 1 Δ α I 0 L eff 2 2 ( 1 + z 2 z 0 2 )

Metrics