Abstract

We studied 1-dimensional (1-D) photonic crystal (PC) films with three alternating layers to investigate multi-mode photonic band-gaps (PBGs) at red, green, and blue color regions. From simulations, it was shown that PCs with three alternating layered elements of [a/b/c] structure have sharp PBGs at the three color regions with the central wavelengths of 459 nm, 527 nm, and 626 nm, simultaneously. Experimentally, it was proven that red, green, and blue PBGs were generated clearly by the PCs, which were made of multilayers of [SiO 2/Ta 2 O 5/TiO 2], based on the simulation. It was also shown that the measured wavelengths of the PBGs corresponded exactly to those of the simulated results. Moreover, it was demonstrated that a 1-D PC of [a/b/c] structure can be used for making white organic light emitting devices (OLEDs) with improved color rendering index (CRI) for color display or lighting.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
    [CrossRef]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  4. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
    [CrossRef]
  5. K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  6. F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
    [CrossRef]
  7. B. Maune, J. Witzens, T. Baehr-Jones, M. Kolodrubetz, H. Atwater, A. Scherer, R. Hagen, and Y. Qiu, "Optically triggered Q-switched photonic crystal laser," Opt. Express 13, 4699-4707 (2005).
    [CrossRef] [PubMed]
  8. P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
    [CrossRef]
  9. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
    [CrossRef]
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
    [CrossRef]
  11. D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
    [CrossRef]
  12. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
    [CrossRef]
  13. H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
    [CrossRef]
  14. T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
    [CrossRef]
  15. A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
    [CrossRef]
  16. T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
    [CrossRef]
  17. D. W. Berreman, "Optics in Stratified and Anisotropic Media: 4X4-Matrix Formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
    [CrossRef]
  18. In our study, for the E-beam evaporated Ta2O5 film, the estimated refractive index was about 1.970 at 550 nm by ellipsometry. See also J.-Y. Zhang, B. Lim and I. W. Boyd, "Thin tantalum pentoxide films deposited by photo-induced CVD," Thin Solid Films 336, 340-343 (1998).
    [CrossRef]
  19. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
    [CrossRef]

2007

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

2006

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

2005

2003

T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
[CrossRef]

2002

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

2001

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

1999

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

1998

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
[CrossRef]

In our study, for the E-beam evaporated Ta2O5 film, the estimated refractive index was about 1.970 at 550 nm by ellipsometry. See also J.-Y. Zhang, B. Lim and I. W. Boyd, "Thin tantalum pentoxide films deposited by photo-induced CVD," Thin Solid Films 336, 340-343 (1998).
[CrossRef]

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

1996

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

1995

D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
[CrossRef]

1994

A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

1993

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
[CrossRef]

1987

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1972

Atwater, H.

Baehr-Jones, T.

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Berreman, D. W.

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
[CrossRef]

Busch, K.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Chen, W. Q.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
[CrossRef]

Dong, X. Z.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

Duana, X. M.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

Fan, B.

Fan, J.-H.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Fujikawa, H.

T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
[CrossRef]

Genack, A. Z.

Hagen, R.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Itoh, Y.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
[CrossRef]

Jin, F.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

John, S.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kakuta, A.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Kolodrubetz, M.

Kopp, V. I.

Lee, P.-T.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Li, C. F.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

Lu, T.-W.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
[CrossRef]

Maune, B.

Miller, T.

A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
[CrossRef]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
[CrossRef]

Munoz, F. A.

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Nakayama, T.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Qiu, Y.

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
[CrossRef]

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

Scherer, A.

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

Shiga, T.

T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
[CrossRef]

Smith, I. H.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

Taga, Y.

T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
[CrossRef]

Taheri, B.

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Tsai, F.-M.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

Vithana, H. K. M.

Witzens, J.

Yablonovitch, E.

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Adv. Mater.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser Emission in a Dye Doped Cholesteric Polymer Network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, F. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Appl. Phys. Lett.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594 (1993).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, and T. Miller, "Color variation with electroluminescent organic semiconductors in multimode resonant cavities," Appl. Phys. Lett. 65, 2308 (1994).
[CrossRef]

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duana, Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101 (2006).
[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, "High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect," Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19 (2003).
[CrossRef]

J. Opt. Soc. Am.

Nature

D. J. Broer, J. Lub, and G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, I. H. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997)
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Thin Solid Films

In our study, for the E-beam evaporated Ta2O5 film, the estimated refractive index was about 1.970 at 550 nm by ellipsometry. See also J.-Y. Zhang, B. Lim and I. W. Boyd, "Thin tantalum pentoxide films deposited by photo-induced CVD," Thin Solid Films 336, 340-343 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) (a) Schematic structure of the 1-D PC, structured with three alternating layers ([a/b/c]) with low, high, and middle refractive indices, n 1, n 2, and n 3, respectively. Simulated transmission spectra (b) and calculated DOM spectra (c) for the 1-D PC films of the [a/b/c] structure (black curve) and the [a/b] structure (red curve) by using the material data under the assumption of constant refractive indices.

Fig. 2.
Fig. 2.

(Color online) (a) Simulated transmission spectra of R, G, B multimode PBGs for the 1-D PC films of the [a/b/c] structure (black curve) and the [a/b] structure (red curve) under the assumption of constant refractive indices. (b) Calculated DOM spectra in the green color region for the [a/b/c] structure (black curve) and the [a/b] structure (red curve).

Fig. 3.
Fig. 3.

(Color online) SEM image of the cross-sectional structure (a) and the transmission spectra (b) of the 1-D PC of [a/b/c]=[SiO 2/TiO 2/Ta 2 O 5]11 structure. The black solid curve shows the measured spectra. The red dashed curve shows the simulated spectra while taking into consideration the dispersions of the refractive indices of the materials that were used. Note that the three main experimental PBGs are in good agreement with the simulated results.

Fig. 4.
Fig. 4.

(Color online) (a) Photographs of the operating OLED with the PC of [a/b/c] structure at 10 V. The active area of the sample OLED is 3×3 mm2. (b) The EL spectra from the sample OLED (black solid curve) and the reference OLED (red solid curve) at V=10 V.

Tables (1)

Tables Icon

Table 1. The dispersion of the refractive indices of the materials that were used in the transmission simulation, shown in Fig. 3(b)

Metrics