Abstract

We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Scarani and N. Gisin, “Quantum key distribution between N partners: Optimal eavesdropping and Bell’s inequalities,” Phys. Rev. A 65, 012311 (2001).
    [Crossref]
  2. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [Crossref]
  3. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
    [Crossref]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  6. M. B. Plenio and V. Vedral, “Teleportation, entanglement and thermodynamics in the quantum world,” Contemp. Phys. 39, 431–446 (1998).
    [Crossref]
  7. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  8. H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  9. R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
    [Crossref]
  10. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [Crossref] [PubMed]
  11. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).
  12. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7853.
    [Crossref] [PubMed]
  13. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
    [Crossref] [PubMed]
  14. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5776.
    [Crossref] [PubMed]
  15. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [Crossref]
  16. V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
    [Crossref]
  17. X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
    [Crossref]
  18. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
    [Crossref]
  19. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
    [Crossref]
  20. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  21. S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
    [Crossref]
  22. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12460.
    [Crossref] [PubMed]
  23. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
    [Crossref]
  24. J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17928.
    [Crossref] [PubMed]
  25. G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, “Full polarization control for fiber optical quantum communication systems using polarization encoding,” Opt. Express 16, 1867–1873 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1867.
    [Crossref] [PubMed]
  26. A. Yoshizawa and H. Tsuchida, “A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, 200–201 (2001).
    [Crossref]
  27. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
    [Crossref]
  28. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 µm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [Crossref] [PubMed]
  29. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-protonexchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  30. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
    [Crossref] [PubMed]
  31. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  32. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
    [Crossref]
  33. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
    [Crossref]
  34. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).
  35. Y. Luo and K. T. Chan, “Quantum cryptography with entangled multiphotons of the same polarization,” Phys. Rev. A 70, 042302 (2004).
    [Crossref]
  36. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
    [Crossref]
  37. H. Takesue and K. Shimizu, submitted to J. Mod. Opt.
  38. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
    [Crossref]
  39. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  40. H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
    [Crossref]

2008 (5)

2007 (5)

S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
[Crossref]

J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17928.
[Crossref] [PubMed]

H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7853.
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[Crossref]

2006 (2)

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

2005 (5)

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-protonexchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

2004 (3)

Y. Luo and K. T. Chan, “Quantum cryptography with entangled multiphotons of the same polarization,” Phys. Rev. A 70, 042302 (2004).
[Crossref]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 µm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[Crossref]

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[Crossref]

2002 (1)

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

2001 (6)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

A. Yoshizawa and H. Tsuchida, “A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, 200–201 (2001).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

V. Scarani and N. Gisin, “Quantum key distribution between N partners: Optimal eavesdropping and Bell’s inequalities,” Phys. Rev. A 65, 012311 (2001).
[Crossref]

1999 (3)

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

1998 (3)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

M. B. Plenio and V. Vedral, “Teleportation, entanglement and thermodynamics in the quantum world,” Contemp. Phys. 39, 431–446 (1998).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Albota, M. A.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Asobe, M.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

Atkinson, P.

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Baek, B.

Barnett, S. M.

S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Blauensteiner, B.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Briegel, H.-J.

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Chan, K. T.

Y. Luo and K. T. Chan, “Quantum cryptography with entangled multiphotons of the same polarization,” Phys. Rev. A 70, 042302 (2004).
[Crossref]

Chen, J.

J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17928.
[Crossref] [PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Chulkova, G.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Cooper, K.

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

de Riedmatten, H.

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

Diamanti, E.

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-protonexchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Dur, W.

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Fejer, M. M.

Fung, C.-H. F.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[Crossref]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Gisin, N.

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

V. Scarani and N. Gisin, “Quantum key distribution between N partners: Optimal eavesdropping and Bell’s inequalities,” Phys. Rev. A 65, 012311 (2001).
[Crossref]

Gol’tsman, G. N.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Honjo, T.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Hubel, H.

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Inoue, K.

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[Crossref]

Kamada, H.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

Kikuchi, K.

Korneev, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Langrock, C.

Lederer, T.

Lee, K. F.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Li, Y.

Liang, C.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

Lim, H. C.

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Lipatov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lo, H.-K.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[Crossref]

Lorunser, T.

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Luo, Y.

Y. Luo and K. T. Chan, “Quantum cryptography with entangled multiphotons of the same polarization,” Phys. Rev. A 70, 042302 (2004).
[Crossref]

Ma, X.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[Crossref]

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Marcikic, I.

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

Miyazawa, H.

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nam, S. W.

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Nishida, Y.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

Odate, S.

S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
[Crossref]

Okunev, O.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Plenio, M. B.

M. B. Plenio and V. Vedral, “Teleportation, entanglement and thermodynamics in the quantum world,” Contemp. Phys. 39, 431–446 (1998).
[Crossref]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Poppe, A.

Radmore, P. M.

S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Ribordy, G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Ritchie, D. A.

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Roussev, R. V.

Scarani, V.

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

V. Scarani and N. Gisin, “Quantum key distribution between N partners: Optimal eavesdropping and Bell’s inequalities,” Phys. Rev. A 65, 012311 (2001).
[Crossref]

Semenov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Shields, A. J.

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Shimizu, K.

H. Takesue and K. Shimizu, submitted to J. Mod. Opt.

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Smirnov, K.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Stevenson, R. M.

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Stucki, D.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Tadanaga, O.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

Takesue, H.

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[Crossref] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5776.
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-protonexchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[Crossref]

H. Takesue and K. Shimizu, submitted to J. Mod. Opt.

Tapster, P. R.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Temporao, G. P.

Tittel, W.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

Tokura, Y.

Tsuchida, H.

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12460.
[Crossref] [PubMed]

S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[Crossref]

A. Yoshizawa and H. Tsuchida, “A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, 200–201 (2001).
[Crossref]

van Houwelingen, J. A. W.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

Vanner, M. R.

Vedral, V.

M. B. Plenio and V. Vedral, “Teleportation, entanglement and thermodynamics in the quantum world,” Contemp. Phys. 39, 431–446 (1998).
[Crossref]

Verevkin, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

Vilela de Faria, G.

von der Weid, J. P.

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 µm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Wu, E.

Wu, G.

Xavier, G. B.

Xie, X.

Yamamoto, Y.

Yoshizawa, A.

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12460.
[Crossref] [PubMed]

S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[Crossref]

A. Yoshizawa and H. Tsuchida, “A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, 200–201 (2001).
[Crossref]

Young, R. J

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Zbinden, H.

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Zeilinger, A.

Zeng, H.

Zhang, J.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

Zhang, Q.

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Appl. Phys. Lett. (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[Crossref]

Contemp. Phys. (1)

M. B. Plenio and V. Vedral, “Teleportation, entanglement and thermodynamics in the quantum world,” Contemp. Phys. 39, 431–446 (1998).
[Crossref]

Electron. Lett. (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[Crossref]

S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43, 1376–1377 (2007).
[Crossref]

Eur. Phys. J. D (1)

V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in twophoton Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005).
[Crossref]

J. Mod. Opt. (2)

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Yoshizawa and H. Tsuchida, “A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, 200–201 (2001).
[Crossref]

Nature (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New J. Phys. 8, 29 (2006).
[Crossref]

Opt. Express (6)

H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7853.
[Crossref] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13957.
[Crossref] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5776.
[Crossref] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12460.
[Crossref] [PubMed]

J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17928.
[Crossref] [PubMed]

G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, “Full polarization control for fiber optical quantum communication systems using polarization encoding,” Opt. Express 16, 1867–1873 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1867.
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (11)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarizationentangled-photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Y. Luo and K. T. Chan, “Quantum cryptography with entangled multiphotons of the same polarization,” Phys. Rev. A 70, 042302 (2004).
[Crossref]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55- µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Longdistance entanglement swapping with photons from separated sources,” Phys. Rev. A 71, 050302(R) (2005).
[Crossref]

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[Crossref]

V. Scarani and N. Gisin, “Quantum key distribution between N partners: Optimal eavesdropping and Bell’s inequalities,” Phys. Rev. A 65, 012311 (2001).
[Crossref]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Phys. Rev. Lett. (5)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Other (4)

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photonpairs over 100 km of standard fiber in OC-192 WDM environment,” Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

H. Takesue and K. Shimizu, submitted to J. Mod. Opt.

S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The concept of a local-area entanglement distribution fiber network. An entanglement distributor, who plays the role of a service provider, distributes entanglement to many application users scattered within a local-area network via fiber-optic transmission lines.

Fig. 2.
Fig. 2.

(color online) Generation of polarization-entangled photon-pairs by combining horizontally-polarized and vertically-polarized pairs produced in different waveguides in an indistinguishable way. PBS: polarization beam-splitter.

Fig. 3.
Fig. 3.

(color online) Visibility versus photon-pair generation rate and distance plot for two users who employ InGaAs single-photon detectors (transmittance at source is 0.1, fiber attenuation is 0.2 dB/km, detector quantum efficiency is 0.2 and dark count probability per gate is 10-4). At 100 km, a photon-pair generation rate of 0.11 per pump pulse gives the highest visibility of 0.725.

Fig. 4.
Fig. 4.

(color online) The three zones of a local-area entanglement distribution fiber network. The location of Alice, Bob, and Charlie are also shown. SP: service provider.

Fig. 5.
Fig. 5.

Calculated two-photon interference fringe visibility versus photon-pair generation rate for entanglement distribution to Alice and Charlie. The bold line is the exact result, the broken line omits multiple-pair emissions, while the thin line includes only double- and triple-pairs.

Fig. 6.
Fig. 6.

Schematic of the transmission experiment. DCF: dispersion compensation fiber, DSF: dispersion-shifted fiber, SMF: single-mode fiber

Fig. 7.
Fig. 7.

(color online) Density matrices reconstructed from quantum state tomography measurements and two-photon interference fringes observed after (a) 82 km and (b) 132 km of fiber transmission (accidental coincidences included). Entanglement fidelity was 0.86 after 82 km transmission. For 132 km transmission, the final entanglement fidelity was 0.60. Averaged two-photon interference fringe visibilities were 0.75 and 0.46, respectively.

Fig. 8.
Fig. 8.

(color online) Theoretical results giving the two-photon interference fringe visibility versus photon-pair generation rate and transmission distance (a) for 0 km to 82 km and (b) for 82 km to 132 km. Experimentally observed visibilities and fidelities were in good agreement with the predicted values.

Tables (1)

Tables Icon

Table. 1. Single-photon detectors used in our example. Numerical values are representative values chosen for convenience and do not represent the performance of actual devices (id Quantique, Scontel, [30, 38]).

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Φ + s , i = H s H i + V s V i ,
| ξ s , i = 1 cosh r n = 0 ( 1 ) n e in φ ( tanh r ) n | n s | n i .
ξ s , i = n = 0 ( 1 ) n e in φ μ n ( 1 + μ ) n + 1 n s n i .
μ λ n ( 1 + μ λ ) n + 1 ,
P ( μ , n ) = ( n + 1 ) ( μ 2 ) 2 ( 1 + μ 2 ) n + 2 .
n = 0 nP ( μ , n ) = μ .
C max = n = 1 A n ( p 1 , p 2 ) P ( μ , n ) F + C acc ,
C min = n = 1 B n ( p 1 , p 2 ) P ( μ , n ) F + C acc ,
A n ( p 1 , p 2 ) = m = 0 n 1 n + 1 [ 1 ( 1 p 1 ) n m ] [ 1 ( 1 p 2 ) n m ]   ,
B n ( p 1 , p 2 ) = m = 0 n 1 n + 1 [ 1 ( 1 p 1 ) n m ] [ 1 ( 1 p 2 ) m ]   ,
C max = [ 1 2 2 + p 1 μ 2 2 + p 2 μ + 2 2 + ( p 1 + p 2 p 1 p 2 ) μ ] F + C acc   ,
C min = p 1 p 2 μ 2 F ( 2 + p 1 μ ) ( 2 + p 2 μ ) + C acc .
C acc = s 1 d 2 + s 2 d 1 d 1 d 2 F ,
s i = n = 1 [ 1 ( 1 p i 2 ) n ] P ( μ , n ) F + d i F = [ 1 1 ( 1 + p i μ 4 ) 2 + d i ] F
V ( μ , p 1 , p 2 ) = C max ( μ , p 1 , p 2 ) C min ( μ , p 1 , p 2 ) C max ( μ , p 1 , p 2 ) + C min ( μ , p 1 , p 2 ) ,
p i = η 0 η i t i ,
Φ s , i = H s H i V s V i ,
ξ H s , i = n = 0 ( 1 ) n e in φ μ H n ( 1 + μ H ) n + 1 n s , H n i , H ,
ξ V s , i = n = 0 ( 1 ) n e in φ μ V n ( 1 + μ V ) n + 1 n s , V n i , V ,
ξ H s , i ξ V s , i = m = 0 n = 0 ( 1 ) m + n e i ( m + n ) φ μ H m ( 1 + μ H ) m + 1 μ V n ( 1 + μ V ) n + 1 m s , H m i , H n s , V n i , V .
μ H = μ V μ 2 ,
ξ H s , i ξ V s , i = m = 0 n = 0 ( 1 ) m + n e i ( m + n ) φ ( μ 2 ) m + n ( 1 + ( μ 2 ) ) m + n + 2 m s , H m i , H n s , V n i , V .
ξ H s , i ξ V s , i = n = 0 ( 1 ) n e in φ ( n + 1 ) ( μ 2 ) n ( 1 + μ 2 ) n + 2 n , pairs ,
n pairs 1 n + 1 m = 0 n m s , H m i , H n m s , V n m i , V .
P ( μ , n ) = ( n + 1 ) ( μ 2 ) n ( 1 + μ 2 ) n + 2 .

Metrics