Abstract

To understand the onset and morphology of femtosecond laser submicron ablation in cells and to study physical evidence of intracellular laser irradiation, we used transmission electron microscopy (TEM). The use of partial fixation before laser irradiation provides for clear images of sub-micron intracellular laser ablation, and we observed clear evidence of bubble-type physical changes induced by femtosecond laser irradiation at pulse energies as low as 0.48 nJ in the nucleus and cytoplasm. By taking ultrathin sliced sections, we reconstructed the laser affected subcellular region, and found it to be comparable to the point spread function of the laser irradiation. Laser-induced bubbles were observed to be confined by the surrounding intracellular structure, and bubbles were only observed with the use of partial pre-fixation. Without partial pre-fixation, laser irradiation of the nucleus was found to produce observable aggregation of nanoscale electron dense material, while irradiation of cytosolic regions produced swollen mitochondria but residual local physical effects were not observed. This was attributed to the rapid collapse of bubbles and/or the diffusion of any observable physical effects from the irradiation site following the laser exposure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Berns, "Optical Tweezers: Tethers, Wavelength, and Heart," Method. Cell Biol. 82, 457-466 (2006).
  2. K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
    [CrossRef] [PubMed]
  3. A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
    [CrossRef] [PubMed]
  4. K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
    [CrossRef]
  5. N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).
  6. K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).
  7. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
    [CrossRef] [PubMed]
  8. M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
    [CrossRef] [PubMed]
  9. E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
    [CrossRef]
  10. U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
    [CrossRef] [PubMed]
  11. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006), http://www.opticsexpress.org/abstract.cfm?id=96194.
    [CrossRef] [PubMed]
  12. N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
    [CrossRef]
  13. N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
    [CrossRef] [PubMed]
  14. H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
    [CrossRef] [PubMed]
  15. G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004).
    [CrossRef] [PubMed]
  16. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
    [CrossRef]
  17. M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956).
    [CrossRef] [PubMed]
  18. A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
    [PubMed]
  19. A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001).
    [CrossRef] [PubMed]
  20. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
    [CrossRef] [PubMed]
  21. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).
  22. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
    [CrossRef] [PubMed]
  23. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
    [CrossRef] [PubMed]
  24. J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003).
    [CrossRef] [PubMed]
  25. V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
    [CrossRef] [PubMed]
  26. A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
    [CrossRef] [PubMed]
  27. A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
    [CrossRef] [PubMed]
  28. A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
    [CrossRef]
  29. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
    [CrossRef] [PubMed]
  30. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-196.
    [PubMed]
  31. B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
    [CrossRef] [PubMed]
  32. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005), http://www.opticsexpress.org/abstract.cfm?id=83815.
    [CrossRef] [PubMed]
  33. E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
    [CrossRef] [PubMed]
  34. P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994).
    [CrossRef]
  35. S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
    [CrossRef] [PubMed]
  36. H. Kushida, "A Study of Cellular Swelling and Shrinkage during Fixation, Dehydration and Embedding in Various Standard Media," J. Electron Microsc. 11, 135-138 (1962).
  37. T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
    [CrossRef]
  38. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).
  39. K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).
  40. M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed. (The Macmillian Press ltd, Hampshire, 1989).
  41. C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
    [CrossRef]
  42. S. S. Mao, F. Qu???er???e, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
    [CrossRef]
  43. M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
    [CrossRef] [PubMed]
  44. E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
    [CrossRef]
  45. H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
    [CrossRef] [PubMed]
  46. R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
    [CrossRef] [PubMed]
  47. J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
    [PubMed]
  48. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
    [CrossRef]
  49. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
    [CrossRef]
  50. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303-10317 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10303.
    [CrossRef] [PubMed]
  51. A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-5-325.
    [CrossRef]

2008 (2)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
[CrossRef] [PubMed]

2007 (4)

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303-10317 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10303.
[CrossRef] [PubMed]

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[CrossRef] [PubMed]

2006 (5)

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

M. W. Berns, "Optical Tweezers: Tethers, Wavelength, and Heart," Method. Cell Biol. 82, 457-466 (2006).

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
[CrossRef] [PubMed]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006), http://www.opticsexpress.org/abstract.cfm?id=96194.
[CrossRef] [PubMed]

2005 (5)

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005), http://www.opticsexpress.org/abstract.cfm?id=83815.
[CrossRef] [PubMed]

V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

2004 (5)

S. S. Mao, F. Qu???er???e, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004).
[CrossRef] [PubMed]

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

2003 (3)

J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

2002 (5)

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef] [PubMed]

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-196.
[PubMed]

2001 (5)

K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
[CrossRef]

A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

2000 (3)

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

1999 (2)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

1998 (2)

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-5-325.
[CrossRef]

1997 (2)

A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
[CrossRef] [PubMed]

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

1996 (1)

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

1994 (2)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994).
[CrossRef]

1992 (1)

R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
[CrossRef] [PubMed]

1962 (1)

H. Kushida, "A Study of Cellular Swelling and Shrinkage during Fixation, Dehydration and Embedding in Various Standard Media," J. Electron Microsc. 11, 135-138 (1962).

1956 (1)

M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956).
[CrossRef] [PubMed]

Acker, J. P.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
[CrossRef] [PubMed]

Agate, B.

Ando, J.

Arakawa, N.

Armstrong, M. R.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Arnold, C. L.

Asiyo-Vogel, M. N.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

Bärsch, N.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

Bear, J. E.

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Berns, M. W.

M. W. Berns, "Optical Tweezers: Tethers, Wavelength, and Heart," Method. Cell Biol. 82, 457-466 (2006).

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Biesele, J. J.

M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956).
[CrossRef] [PubMed]

Birngruber, R.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

Botchway, S. W.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Botvinick, E. L.

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

Brown, C. T. A.

Brujan, E. A.

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

Buttle, K. F.

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

Capon, M. R. C.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

Clokie, C. M. L.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Cole, R. W.

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
[CrossRef] [PubMed]

Da Silva, L. B.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Datta, D.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Dholakia, K.

Dizdaroglu, M

R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
[CrossRef] [PubMed]

Dunn, A.

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Elezzabi, A. Y.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
[CrossRef] [PubMed]

Ertmer, W.

Fan, C. H.

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

Feit, M. D.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Fischer, P.

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006), http://www.opticsexpress.org/abstract.cfm?id=96194.
[CrossRef] [PubMed]

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Fritzsche, W.

Fujita, K.

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
[CrossRef] [PubMed]

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

Fukui, K.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Galbraith, J. A.

J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003).
[CrossRef] [PubMed]

Girard, B.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Glezer, E.

Glinsky, M. E.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Goldberg, J. H.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

Gunn-Moore, F.

Halbhuber, K. -J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

Hammer, D. X.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

Hanninen, P. E.

P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994).
[CrossRef]

Harper, J. V.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Heisterkamp, A.

Hell, S. W.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-5-325.
[CrossRef]

P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994).
[CrossRef]

Higashi, T.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Hirase, H.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

Hopt, A.

A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

Hutson, M. S.

M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

Ingber, D. E.

Ingber, D.E.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Ishii, H.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

Isobe, K.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Itoh, K.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Iwanaga, S.

Jacobson, K.

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Kaneko, T.

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

Katoh, K.

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

Kawata, S.

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
[CrossRef] [PubMed]

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

Khodjakov, A.

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
[CrossRef] [PubMed]

Kim, A.

Kinnally, K. W.

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

Kohli, V.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
[CrossRef] [PubMed]

König, K.

U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef] [PubMed]

K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
[CrossRef]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

Körber, K.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Kumamoto, Y.

Kumar, S.

Kushida, H.

H. Kushida, "A Study of Cellular Swelling and Shrinkage during Fixation, Dehydration and Embedding in Various Standard Media," J. Electron Microsc. 11, 135-138 (1962).

Leatherbarrow, E. L.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

LeDuc, P.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Liaw, L. H.

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Longtin, J. P.

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

Lubatschowski, H.

Ma, X.

M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[CrossRef] [PubMed]

Mammini, B. M.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Mannella, C. A.

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

Mao, S. S.

S. S. Mao, F. Qu???er???e, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Matsunaga, S.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Maxwell, I. Z.

Mazur, E.

McConnell, G.

G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004).
[CrossRef] [PubMed]

McEwen, B. F.

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

Miller, R. J. D.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Nackerdien, Z.

R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
[CrossRef] [PubMed]

Nakamura, O.

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

Neher, E.

A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

Nickerson, J. A.

Nikolenko, V.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

Noojin, G. D.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

O???Neill, P.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Oehring, H.

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

Olinski, R.

R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Ostendorf, A.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

Parker, A. W.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Perry, M. D.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Reynolds, P.

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Riches, A.

Rieder, C.

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

Rieder, C. L.

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
[CrossRef] [PubMed]

Riemann, I.

K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
[CrossRef]

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

Riis, E.

G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004).
[CrossRef] [PubMed]

Rockwell, B. A.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

Rubenchik, A. M.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Schaffer, C.

Schaffer, C. B.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Schönle, A.

Shah, J. V.

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

Shen, F.

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Shen, N.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Shimada, T.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

Sibbett, W.

Sivakumar, N. R.

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

Small, W.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Smith, N.

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

Smith, N. I.

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

Stanley, P.

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

Stevenson, D.

Stuart, B. C.

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Sun, J.

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

Takamatsu, T.

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

Tan, B.

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

Terasaki, M.

J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003).
[CrossRef] [PubMed]

Tirlapur, U. K.

U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Tobioka, M.

M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956).
[CrossRef] [PubMed]

Tönshoff, K. H.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

Tsampoula, X.

Uetrecht, A. C.

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

Underwood, J. M.

Venkatakrishnan, K.

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

Venugopalan, V.

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Vitriol, E. A.

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

Wallace, V.

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Wang, Z.

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Watanabe, W.

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

Wilson, B. C.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Yu, D.

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

Yuste, R.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

Appl. Phys. A (1)

S. S. Mao, F. Qu???er???e, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Appl. Phys. A-Mater. Sci. Process. (1)

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).

Appl. Phys. Lett. (3)

K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).

N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).

N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[CrossRef]

Arch. Biochem. Biophys. (1)

R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992).
[CrossRef] [PubMed]

B-Lasers Opt. (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005).
[CrossRef]

Bioimaging (1)

P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994).
[CrossRef]

Biophys. J. (3)

A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999).
[CrossRef] [PubMed]

E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004).
[CrossRef] [PubMed]

Cell Biochem. Biophys. (1)

S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[CrossRef] [PubMed]

Cell Motil. Cytoskeleton (1)

A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997).
[CrossRef] [PubMed]

Cell. Mol. Biol. (1)

K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).

Chem. Rev. (1)

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Exp. Cell Res. (1)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994).
[PubMed]

J. Appl. Phys. (2)

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998).
[CrossRef]

J. Biomed. Opt. (1)

G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004).
[CrossRef] [PubMed]

J. Biophys. Biochem. Cytol. (1)

M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956).
[CrossRef] [PubMed]

J. Cell Biol. (1)

A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997).
[CrossRef] [PubMed]

J. Electron Microsc. (1)

H. Kushida, "A Study of Cellular Swelling and Shrinkage during Fixation, Dehydration and Embedding in Various Standard Media," J. Electron Microsc. 11, 135-138 (1962).

J. Fluid Mech. (1)

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

J. Microsc. (1)

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

J. Neurobiol. (1)

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007).
[CrossRef] [PubMed]

V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005).
[CrossRef] [PubMed]

Mech. Chem. Biosyst. (1)

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).

Method. Cell Biol. (1)

M. W. Berns, "Optical Tweezers: Tethers, Wavelength, and Heart," Method. Cell Biol. 82, 457-466 (2006).

Mitochondrion (1)

A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004).
[CrossRef]

Mol. Biol. Cell (1)

J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003).
[CrossRef] [PubMed]

Natl. Acad. Sci. U. S. A. (1)

E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007).
[CrossRef]

Nature (1)

U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef] [PubMed]

Opt. Express (8)

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869.
[CrossRef]

C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-196.
[PubMed]

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078.
[CrossRef] [PubMed]

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005), http://www.opticsexpress.org/abstract.cfm?id=83815.
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569.
[CrossRef] [PubMed]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006), http://www.opticsexpress.org/abstract.cfm?id=96194.
[CrossRef] [PubMed]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303-10317 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10303.
[CrossRef] [PubMed]

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604.
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (1)

J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published).
[PubMed]

Phys. Rev. Lett. (2)

M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[CrossRef] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000).
[CrossRef] [PubMed]

Scanning (1)

H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000).
[CrossRef] [PubMed]

Other (1)

M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed. (The Macmillian Press ltd, Hampshire, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

TEM images of laser irradiation sites in the cytoplasm of HeLa cells. The black arrows indicate the rows of laser-irradiated sites. The pulse energies were: (a) 0.48 nJ, (b) 0.6 nJ, and (c) 0.72 nJ. The distances between adjacent irradiated sites are 2 µm, and exposure conditions were 8 ms for each irradiation site, with a 780 nm wavelength. The nuclear region is marked with an ‘N’. For the irradiation location marked with a white arrow, detailed sectional images are shown in Fig. 2.

Fig. 2.
Fig. 2.

Images from subsequent microtome slices of the laser-irradiated region marked by the white arrow shown in Fig. 1. The direction of laser light propagation was from the lower numbered sections to the higher numbered sections. The thickness of one sliced section was ostensibly 100 nm (and measured by AFM to be 104 +/-16 nm) and the irradiation pulse energy was 0.6 nJ. In the lower numbered sections, images indicate that the laser ablation mechanism may be dependent on the laser polarization. The arrow indicates the direction of polarization.

Fig. 3.
Fig. 3.

Outline of laser-ablated region in 3D. This image is constructed with the edge of the laser-induced changes shown in Fig. 2. Image (b) is a rotation of image (a) around the z axis by 90 degrees. White arrows indicate the direction of polarization, and the distance between each sliced section is approximately 104 nm.

Fig. 4.
Fig. 4.

Laser ablation lengths in cytosol were measured by pre-fixation with glutaraldehyde followed by irradiation for 8 ms. No substantial pulse energy dependence was observed, even at threshold. Instead, the probability of ablation was dominated by the pulse energy. Error bars were calculated using the standard deviation of all observable irradiation sites. The laser pulse energies of 0.36, 0.48, 0.6, 0.72 nJ correspond to 30, 40, 50 and 60 mW of average metered laser power, and the ‘X’ stands for no observable ablation at 0.36 nJ pulse energy. The number of ablation zone lengths combined in the graph is: 13 sites from 4 cells in 3 dishes (0.36 nJ); 9 sites from 2 cells in 2 dishes (0.48 nJ); 44 sites from 5 cells in 5 dishes (0.6 nJ); and 12 sites in 3 cells in 3 dishes (0.72 nJ).

Fig. 5.
Fig. 5.

TEM images showing 200 nm lateral diameter laser-induced changes in the nucleus. The black arrows indicate the rows of laser-irradiated sites. (a) 12 out of 12 irradiation sites were visible following irradiation at a pulse energy of 0.6 nJ. (b) for a pulse energy of 0.72 nJ, 9 out of 9 irradiation sites were visible. At a pulse energy of 0.48 nJ (not shown), 9 out of 9 irradiation sites were not visible. The distance between adjacent irradiated sites was 2 µm, and the exposure time was 8 ms for each site. Images from subsequent microtome slices are shown in Fig. 6, taken from slices of the region marked by a white arrow.

Fig. 6.
Fig. 6.

Images from subsequent microtome slices of the laser-irradiated region marked by the white arrow shown in Fig. 5. The direction of laser light propagation was from the lower numbered sections to the higher numbered sections. The thickness of one sliced section was approximately 104 nm, and the irradiation pulse energy was 0.72 nJ.

Fig. 7.
Fig. 7.

TEM image of laser-irradiation sites where the cytoplasm of a HeLa cell was irradiated without pre-fixation. Fixation was performed immediately after 10 sites were irradiated in a pattern similar to that shown in Fig. 1. The pulse energy was 0.72 nJ and other exposure conditions were identical to Fig. 1. (a) No visible local modifications by laser could be observed, but mitochondria in the cell were observed to exhibit swelling. The white dashed rectangle outlines the laser-irradiated regions. (b) Magnified image of swollen mitochondrion. (c) For comparison, the mitochondria of HeLa cell, without irradiation. The nuclear region is marked with an ‘N’.

Fig. 8.
Fig. 8.

TEM image of laser-irradiation in the nucleus without pre-fixation. 4 sites were irradiated in a rectangular pattern. The larger image (a) shows 4 irradiated sites from one microtome slice of the cell. All sections are presented magnified in the sequential images shown in (b). The four point diagram shows the irradiation pattern at the same scale as the sectioned images. Sections numbered 9 to 14 were not recoverable from this sample. The laser pulse energy was 0.48 nJ, and the exposure time was 8 ms.

Fig. 9.
Fig. 9.

For ablation sites adjacent to the nuclear membrane, the bubble often appeared constrained by the nucleus. For pulse energies of 0.60 nJ (50 mW average laser power), 9 sites were observed in close proximity to the nucleus. 4 sites not clearly showing constrained bubbles are labeled (a-d), and 5 sites which show constrained bubbles are labeled (e-i). In all images, the nucleus side is labeled by ‘N’. For pulse energies of 0.72 nJ (60 mW average laser power), 5 sites were observed in close proximity to the nucleus. 2 sites not clearly showing constrained bubbles are labeled (j) and (k), and 3 sites which show constrained bubbles are labeled (l-m).

Metrics