Abstract

We demonstrate continuous wave supercontinuum generation extending to the visible spectral region by pumping photonic crystal fibers at 1.07 µm with a 400 W single mode, continuous wave, ytterbium fiber laser. The continuum spans over 1300 nm with average powers up to 50 W and spectral power densities over 50 mW/nm. Numerical modelling and understanding of the physical mechanisms has led us to identify the dominant contribution to the short wavelength extension to be trapping and scattering of dispersive waves by high energy solitons.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  2. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
    [CrossRef]
  3. M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
    [CrossRef]
  4. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
    [CrossRef]
  5. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended CW supercontinuum generation in a low water-loss Holey fiber," Opt. Lett. 30, 3132 (2005).
    [CrossRef] [PubMed]
  6. A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
    [CrossRef]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
    [CrossRef] [PubMed]
  8. A. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
    [CrossRef] [PubMed]
  9. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
    [CrossRef] [PubMed]
  10. P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
    [CrossRef]
  11. A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  12. P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
    [CrossRef]
  13. M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
    [CrossRef]
  14. S. V. Popov, J. R. Taylor, A. B. Rulkov, and V. P. Gapontsev, "Multi-watt, 1.48-2.05 um range CWRaman-soliton continuum generation in highly-nonlinear fibres," in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2004) paper CThEE4.
  15. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "Towards visible CW pumped supercontinua," Opt. Lett. doc. ID 97526 (posted 14 August 2008, in press).
    [CrossRef]
  16. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
    [CrossRef] [PubMed]
  17. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
    [CrossRef] [PubMed]
  18. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schr¨odinger equation," Opt. Express 15, 16110-16123 (2007).
    [CrossRef] [PubMed]
  19. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-Pulse Propagation in Optical Fibers," Opt. Lett. 15, 1076-1078 (1990).
    [CrossRef] [PubMed]
  20. D. Milam, "Review and Assessment of Measured Values of the Nonlinear Refractive-Index Coefficient of Fused Silica," Appl. Opt. 37, 546-550 (1998).
    [CrossRef]
  21. D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B 19, 2886-2892 (2002).
    [CrossRef]
  22. K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  23. J. Lægsgaard, DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, ?rsteds Plads 345V, DK-2800 Kgs. Lyngby, Denmark, "Raman term in the nonlinear Schr¨odinger equation," (personal communication, 2008).
  24. J. Hult, "A Fourth-Order Runge-Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers," J. Lightwave Technol. 25, 3770-3775 (2007).
    [CrossRef]
  25. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  26. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
    [CrossRef] [PubMed]
  27. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007).
    [CrossRef] [PubMed]
  28. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell??s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  29. V. P. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, "Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach," Opt. Lett. 20, 456-458 (1995).
    [CrossRef] [PubMed]
  30. J. C. Travers, S. V. Popov, and J. R. Taylor, "A New Model for CW Supercontinuum Generation," in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.
  31. J. C. Travers, Femtosecond Optics Group, Physics Department, Prince Consort Road, Imperial College, London SW7 2AZ, UK, is preparing a manuscript to be called "Modelling the Initial Conditions of Continuous Wave Supercontinuum Generation."
  32. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
    [CrossRef] [PubMed]
  33. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]
  34. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006).
    [CrossRef] [PubMed]
  35. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
    [CrossRef]
  36. K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
    [CrossRef] [PubMed]
  37. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).
  38. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  39. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
    [CrossRef]
  40. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
    [CrossRef]
  41. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  42. P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
    [CrossRef] [PubMed]
  43. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  44. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]

2008 (2)

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (3)

2005 (6)

2004 (2)

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
[CrossRef]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
[CrossRef] [PubMed]

2003 (5)

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
[CrossRef]

1998 (1)

1996 (1)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

1995 (2)

1990 (2)

P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

P. V. Mamyshev and S. V. Chernikov, "Ultrashort-Pulse Propagation in Optical Fibers," Opt. Lett. 15, 1076-1078 (1990).
[CrossRef] [PubMed]

1989 (2)

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
[CrossRef]

1988 (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

1986 (2)

J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
[CrossRef] [PubMed]

1985 (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

1980 (1)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

Abeeluck, A.

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Avdokhin, A. V.

Bang, O.

Bar-Joseph, I.

Barviau, B.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Beaugeois, M.

Bjarklev, A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Bouazaoui, M.

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

Cantrell, C. D.

Chemla, D. S.

Chen, H.

P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Chernikov, S. V.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

P. V. Mamyshev and S. V. Chernikov, "Ultrashort-Pulse Propagation in Optical Fibers," Opt. Lett. 15, 1076-1078 (1990).
[CrossRef] [PubMed]

Coen, S.

Cumberland, B. A.

de Matos, C. J. S.

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Ferin, A. A.

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
[CrossRef]

Finot, C.

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Fontaine, M.

Frosz, M. H.

Gapontsev, V. P.

George, A. K.

Godbout, N.

Gomes, A. S. L.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Gonzalez-Herraez, M.

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Gordon, J. P.

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
[CrossRef] [PubMed]

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

Headley, C.

A. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Hollenbeck, D.

Holzlohner, R.

Hult, J.

Islam, M. N.

Joannopoulos, J. D.

Johnson, S. G.

Jorgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kim, N. S.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
[CrossRef]

Knight, J. C.

Kobtsev, S. M.

Kudlinski, A.

Lacroix, S.

Lægsgaard, J.

Lantz, E.

Lee, Y.

P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Maillotte, H.

Mamyshev, P. V.

P. V. Mamyshev and S. V. Chernikov, "Ultrashort-Pulse Propagation in Optical Fibers," Opt. Lett. 15, 1076-1078 (1990).
[CrossRef] [PubMed]

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Martin-Lopez, S.

Menyuk, C. R.

Milam, D.

Mussot, A.

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Persephonis, P.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

Pitois, S.

Popov, S. V.

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
[CrossRef] [PubMed]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended CW supercontinuum generation in a low water-loss Holey fiber," Opt. Lett. 30, 3132 (2005).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

Prabhu, M.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Randoux, S.

Rulkov, A. B.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Sinkin, O. V.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Smirnov, S. V.

Stelmakh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Sucha, G.

Suret, P.

Sylvestre, T.

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
[CrossRef] [PubMed]

Taylor, J. R.

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended CW supercontinuum generation in a low water-loss Holey fiber," Opt. Lett. 30, 3132 (2005).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
[CrossRef] [PubMed]

Travers, J. C.

Tzolov, V. P.

Ueda, K.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
[CrossRef]

Vanholsbeeck, F.

Vyatkin, M. Y.

Wai, P.

P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Wegener, M.

Wood, D.

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Zweck, J.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004).
[CrossRef]

Electron. Lett. (1)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Jpn. J. Appl. Phys (1)

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000).
[CrossRef]

Opt. Commun. (2)

M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
[CrossRef]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008).
[CrossRef]

Opt. Express (10)

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schr¨odinger equation," Opt. Express 15, 16110-16123 (2007).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell??s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

Opt. Lett. (8)

Phys. Rev. A (3)

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986).
[CrossRef] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other (5)

S. V. Popov, J. R. Taylor, A. B. Rulkov, and V. P. Gapontsev, "Multi-watt, 1.48-2.05 um range CWRaman-soliton continuum generation in highly-nonlinear fibres," in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2004) paper CThEE4.

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "Towards visible CW pumped supercontinua," Opt. Lett. doc. ID 97526 (posted 14 August 2008, in press).
[CrossRef]

J. Lægsgaard, DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, ?rsteds Plads 345V, DK-2800 Kgs. Lyngby, Denmark, "Raman term in the nonlinear Schr¨odinger equation," (personal communication, 2008).

J. C. Travers, S. V. Popov, and J. R. Taylor, "A New Model for CW Supercontinuum Generation," in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.

J. C. Travers, Femtosecond Optics Group, Physics Department, Prince Consort Road, Imperial College, London SW7 2AZ, UK, is preparing a manuscript to be called "Modelling the Initial Conditions of Continuous Wave Supercontinuum Generation."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Calculated dispersion curves for our fibers. HF1050 (blue), HF840 (red), HFDBL (green).

Fig. 3.
Fig. 3.

Measured spectra out of 17 m HFDBL for 50 W (blue), 85 W (red) and 170 W (green) equivalent coupled pump power on a relative power scale.

Fig. 4.
Fig. 4.

Measured spectra out of 20 m of HF840 for 170 Wequivalent pump power, normalized to the total average output power of 50 W.

Fig. 5.
Fig. 5.

Measured spectra out of 50 m of HF1050 for 230 W equivalent pump power, normalized to the total average output power of 28 W.

Fig. 6.
Fig. 6.

Simulated spectrograms of the supercontinuum development through HFDBL for 170Wpump power. The spectrograms are calculated for fiber lengths of: (a) 0 m, (b) 1.5 m, (c) 3.0 m, (d) 7.0 m. The full color scales and axis figure scales change for each sub-figure and range over 40 dB.

Fig. 7.
Fig. 7.

Calculated phase (PM) and group velocity (GVM) matching curves for HF1050. The solid yellow line indicates the long wavelength edge in the supercontinuum output of HF1050 and the solid green line indicates the short wavelength edge.

Fig. 8.
Fig. 8.

Simulated spectrograms of the supercontinuum development through HF1050 for 170 W pump power. The spectrograms are calculated for fiber lengths of: (a) 0 m, (b) 3 m, (c) 9 m, (d) 25 m. The full color scales and axis figure scales change for each sub-figure and range over 40 dB.

Tables (1)

Tables Icon

Table 1. Parameters a of the photonic crystal fibers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

z E ( ω , z ) = i ( β ( ω ) β ( ω 0 ) ω β ( ω ) ω 0 Ω ) E ( ω , z )
α ( ω ) 2 E ( ω , z )
i n 2 ω c A eff ( 1 / 4 ) ( ω ) d ω 1 E ¯ ( ω 1 , z ) R ( ω 1 ω )
× d ω 2 E ¯ ( ω 1 ω 2 ω , z ) E ¯ ( ω 2 , z ) ,
E ¯ ( ω , z ) = E ( ω , z ) A eff ( 1 / 4 ) ( ω ) .
R ( ω 1 ω ) = ( 1 f r ) + f r h r ( ω 1 ω ) ,
S ( t , ω , z ) = 10 log 10 E r e f ( t t ) E ( t , z ) exp [ i ω t ] d t

Metrics