Abstract

We demonstrate refractive-index sensors based on copper-rod-supported microfiber loops. Due to the robustness of the supported loop structure and the flexibility of obtaining critical coupling within a broad spectral range, these microfiber loops show high sensitivity and high stability for sensing in both low- and high-concentration solutions with estimated sensitivity of refractive-index measurement up to 1.8×10-5.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Lou, L. M. Tong and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135.
    [CrossRef] [PubMed]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  3. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, "Holey fiber tapers with resonance transmission for high-resolution refractive index sensing," Opt. Express 13, 7609-7614 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7609.
    [CrossRef] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  5. D. Monzón-Hernández and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231, (2006).
    [CrossRef]
  6. I. M. White, H. Oveys, and X. D. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  7. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. D. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14376.
    [CrossRef] [PubMed]
  8. M. Sumetsky, Y. Dulashko, and R. S. Windeler, "Temperature and pressure compensated microfluidic optical sensor," in Conference on Lasers and Electro-Optics, (San Jose, 4-9 May 2008), pp. 1-2.
  9. L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
    [CrossRef]
  10. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1062.
    [CrossRef] [PubMed]
  11. G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
    [CrossRef]
  12. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef] [PubMed]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
    [CrossRef]
  14. J. Villatoro and D. Monzón-Hernández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5087.
    [CrossRef] [PubMed]
  15. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11952.
    [CrossRef] [PubMed]
  16. A. V. Wolf, M. G. Brown, and P. G. Prentiss, "Concentration properties of aqueous solution: conversion tables," in CRC Handbook of Chemistry and Physics, R. C. Weast, M. J. Astle, ed. (CRC Press, INC., Boca Ration, Fla., 1982-1983).
  17. P. R. Cooper, "Refractive-Index measurements of liquids used in conjunction with optical fibers," Appl. Opt. 22, 3070-3072 (1983).
    [CrossRef] [PubMed]
  18. X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
    [CrossRef]
  19. I. M. White and X. D. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1020.
    [CrossRef] [PubMed]

2008 (4)

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef] [PubMed]

I. M. White and X. D. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1020.
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1062.
[CrossRef] [PubMed]

2007 (4)

2006 (3)

I. M. White, H. Oveys, and X. D. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

D. Monzón-Hernández and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231, (2006).
[CrossRef]

2005 (5)

1983 (1)

Brambilla, G.

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1062.
[CrossRef] [PubMed]

Calixto, S.

Chen, X. F.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Cooper, P. R.

DiGiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

Dulashko, Y.

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. D. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14376.
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

Fan, X. D.

Finazzi, V.

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

Grelu, P.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Guo, X.

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

Horak, P.

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jiang, X. S.

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Li, Y. H.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lou, J. Y.

Mansuripur, M.

Meschede, D.

Minkovich, V. P.

Monzón-Hernández, D.

Oveys, H.

Pan, X. Y.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pruneri, V.

Rauschenbeutel, A.

Shi, L.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Sokolowski, M.

Sotskaya, L. I.

Sotsky, A. B.

Sumetsky, M.

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. D. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14376.
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

Tan, W.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Tong, L. M.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
[CrossRef]

J. Y. Lou, L. M. Tong and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135.
[CrossRef] [PubMed]

Vetsch, E.

Vienne, G.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Villatoro, J.

Warken, F.

White, I. M.

Windeler, R. S.

Xu, F.

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1062.
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Xu, Y. H.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ye, Z. Z.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7888. F. Xu and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91, 073512 (2007).
[CrossRef]

J. Lightw. Technol. (1)

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightw. Technol. 24, 242-250 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).
[CrossRef]

Opt. Express (7)

J. Y. Lou, L. M. Tong and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135.
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5087.
[CrossRef] [PubMed]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, "Holey fiber tapers with resonance transmission for high-resolution refractive index sensing," Opt. Express 13, 7609-7614 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7609.
[CrossRef] [PubMed]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11952.
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. D. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14376.
[CrossRef] [PubMed]

I. M. White and X. D. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1020.
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1062.
[CrossRef] [PubMed]

Opt. Lett. (2)

Sens. Actuators B (1)

D. Monzón-Hernández and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231, (2006).
[CrossRef]

Sensors (1)

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Other (2)

M. Sumetsky, Y. Dulashko, and R. S. Windeler, "Temperature and pressure compensated microfluidic optical sensor," in Conference on Lasers and Electro-Optics, (San Jose, 4-9 May 2008), pp. 1-2.

A. V. Wolf, M. G. Brown, and P. G. Prentiss, "Concentration properties of aqueous solution: conversion tables," in CRC Handbook of Chemistry and Physics, R. C. Weast, M. J. Astle, ed. (CRC Press, INC., Boca Ration, Fla., 1982-1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission spectra of a 480-µm-diameter copper-rod-supported loop (assembled with a 2.1-µm-diameter silica microfiber) immersed in a glycerol aqueous solution with glycerol concentration of 60, 68, 72 and 76 wt.% (corresponding to a refractive index of 1.40, 1.41, 1.42, 1.43), respectively.

Fig. 2.
Fig. 2.

Schematic side view of a copper-rod-supported microfiber loop used for refractive index sensing. The copper rod and the microfiber loop are immersed in a pool of the solution to be detected. The convex meniscus at the pool edges allows the entrance of the microfiber into the liquid.

Fig. 3.
Fig. 3.

Transmission spectra of a copper-rod-supported loop when immersed in pure water. The loop is about 480 µm in diameter and is assembled with a 2.4-µm-diameter microfiber. The red and black spectra are obtained under different coupling conditions.

Fig. 4.
Fig. 4.

Refractive-index-dependent resonance shifts of a copper-rod-supported loop in an ethanol solution. The loop is about 480 µm in diameter and is assembled with a 2.4-µm-diameter microfiber. (a) Spectral shifts of a resonant peak caused by index change of the solution. The eight peaks are obtained by adding a 5-µL ethanol into a 500-µL water in steps. (b) Resonant wavelength as a function of the refractive index change. The black dots are resonant wavelengths extracted from (a), and the numerical fitting is obtained with a calculated slope of 17.8 (nm/RIU).

Fig. 5.
Fig. 5.

Refractive-index-dependent resonance shifts of a copper-rod-supported loop in a glycerol solution. The loop is about 480 µm in diameter and is assembled with a 2.2-µm-diameter microfiber. A 500-µL 48 wt.% (5.84 mol/L) glycerol aqueous solution with a refractive index of 1.39 is used as the starting solution. (a) The resonant peak shifts to shorter wavelength as the index of the solution goes down when pure water is added in steps (5 µL in each step). (b) The resonance peak shifts to longer wavelength when the index of the solution is increased by adding 72 wt.% glycerol aqueous solution in steps (5 µL in each step).

Metrics