Abstract

Based on surface plasmon resonant enhancement, a method to realize photolithography beyond diffraction limit by using polystyrene spheres (PSs) self-assembled on silver slab was proposed in this paper. The optimum parameters for PS with different diameters were presented. In order to verify this method, numerical simulation on a typical configuration with 1.5µm diameter of PS was carried out by using the finite-difference time-domain (FDTD) method, and the minimum feature size of 88nm beyond diffraction limit at 365nm working wavelength was obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
    [CrossRef]
  2. G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
    [CrossRef]
  3. K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
    [CrossRef]
  4. R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
    [CrossRef]
  5. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 504 (1968).
    [CrossRef]
  7. D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
    [CrossRef]
  8. J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002).
    [CrossRef]
  9. A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004).
    [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  11. X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008).
    [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
    [CrossRef]
  13. Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
    [CrossRef] [PubMed]
  14. B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
    [CrossRef]
  15. M. H. Wu, K. E. Paul, and G. M. Whitesides, "Patterning flood illumination with microlens arrays," Appl. Opt. 41, 2575-2585 (2002).
    [CrossRef] [PubMed]
  16. M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001).
    [CrossRef]
  17. Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
    [CrossRef]
  18. A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
    [CrossRef]
  19. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
    [CrossRef]
  20. J. B. Pendry "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  21. M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
    [CrossRef]
  22. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
    [CrossRef] [PubMed]

2008

X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008).
[CrossRef]

2007

D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
[CrossRef]

2005

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
[CrossRef]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

2003

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
[CrossRef]

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

2002

M. H. Wu, K. E. Paul, and G. M. Whitesides, "Patterning flood illumination with microlens arrays," Appl. Opt. 41, 2575-2585 (2002).
[CrossRef] [PubMed]

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002).
[CrossRef]

2001

M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001).
[CrossRef]

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

1994

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

1968

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 504 (1968).
[CrossRef]

Abelmann, L.

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

Ambati, M.

D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
[CrossRef]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Cacialli, F.

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

Charas, A.

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Fang, N.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

Gates, Y. L. B.

Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Genov, D. A.

D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
[CrossRef]

Kissel, V. N.

A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Kyser, D. F.

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

Lagarkov, A. N.

A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Levenson, M. D.

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

Liu, Z. W.

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

Liu, Z.W.

X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008).
[CrossRef]

Lodder, J. C.

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

Lu, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Maradudinc, A. A.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
[CrossRef]

Morgado, J.

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
[CrossRef]

Parviz, B. A.

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Paul, K. E.

Pendry, J. B.

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002).
[CrossRef]

J. B. Pendry "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Phillips, G. N.

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

Quate, C. F.

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002).
[CrossRef]

Riehn, R.

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

Ryan, D.

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Siekman, M.

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

Singh, B.

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

Smolyaninovb, I. I.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
[CrossRef]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 504 (1968).
[CrossRef]

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
[CrossRef]

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

M. H. Wu, K. E. Paul, and G. M. Whitesides, "Patterning flood illumination with microlens arrays," Appl. Opt. 41, 2575-2585 (2002).
[CrossRef] [PubMed]

M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001).
[CrossRef]

Wilder, K.

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
[CrossRef]

M. H. Wu, K. E. Paul, and G. M. Whitesides, "Patterning flood illumination with microlens arrays," Appl. Opt. 41, 2575-2585 (2002).
[CrossRef] [PubMed]

M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001).
[CrossRef]

Xia, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

Xia, Y. N.

Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Yen, T. J.

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

Yin, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

Yin, Y. D.

Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Zayatsa, A. V.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
[CrossRef]

Zhang, X.

X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008).
[CrossRef]

D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

Adv. Mater.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001).
[CrossRef]

G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002).
[CrossRef]

R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Colloid Interface Sci.

M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003).
[CrossRef]

IEEE J. Quantum Electron

D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007).
[CrossRef]

IEEE Trans. Adv. Packaging

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

J. Am. Chem. Soc.

Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

J. Phys. Condens. Matter

J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

Nano Lett.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Nature Mater.

X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008).
[CrossRef]

New J. Phys.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Opt. Express.

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003).
[CrossRef] [PubMed]

Phys. Reports

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005).
[CrossRef]

Phys. Rev. Lett

J. B. Pendry "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Sci.Technol. B

K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 504 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme configuration of simulated superlens lithography structure

Fig. 2.
Fig. 2.

Simulated results by FDTD (a) Energy distribution without silver slab. Zoomed picture with one beam is in the range of 50nm away from the surface of the PR. (b) Energy distribution with silver thickness 18nm. Zoomed picture with one beam is in the range of 50nm away from the surface of the PR. (c) Normalized intensities on the surfaces of PR in the cases with and without silver slab, respectively (d) FWHM of the beam and normalized intensity in the range of 300nm away from the surface of the PR at x=0

Fig. 3.
Fig. 3.

Numerical study on the feature size of various silver thickness and PS diameter (a) Silver thickness-dependent feature size and transmitted energy with PS diameter 1.5 µm (b) PS diameter-dependent optimum silver thickness and beam feature size.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

lim ε m 1 lim k x 2 + k y 2 = exp ( i k z d ) = exp ( + k x 2 + k y 2 d )

Metrics