Abstract

The properties of passively mode-locked laser oscillators based on Ytterbium doped gain media are studied theoretically along with experimental data. Based on the chirped-pulse approach limitations due to excessive non-linearities are avoided, opening up new routes for energy scaling of mode-locked solid-state oscillators. Predictions about potential future pulse energies are made and possible experimental problems are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Proktor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993).
    [CrossRef]
  2. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
    [CrossRef]
  3. S. Dewald, T. Lang, C.D. Schr¨oter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072-2074 (2006).
    [CrossRef] [PubMed]
  4. F. O¨. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef]
  5. B. Ortac¸, O. Schmidt, T. Schreiber, J. Limpert, A. T¨unnermann, and A. Hideur, "High-energy femtosecond Ybdoped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
    [CrossRef] [PubMed]
  6. S. V. Marchese, S. Hashimoto, C.R.E. Baer, M.S. Ruosch, R. Grange, M. Golling, T. S¨udmeyer, U. Keller, G. L´epine, G. Gingras, and B. Witzel, "Passively mode-locked thin disk lasers reach 10 microjoules pulse energy at megahertz repetition rate and drive high field physics experiments," presented at CLEO / Europe 2007, Munich, Germany, 17-22 June 2007.
  7. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, "Passively mode-locked Yb:YAG thindisk laser with pulse energies exceeding 13 uJ by use of an active multipass geometry," Opt. Lett. 33, 726-728 (2008).
    [CrossRef] [PubMed]
  8. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, "Passively modelocked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion," Opt. Express 15, 16017-16021 (2007).
    [CrossRef] [PubMed]
  9. A. Killi, A. Steinmann, J. D¨orring, U. Morgner, M.J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
    [CrossRef] [PubMed]
  10. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
    [CrossRef]
  11. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef] [PubMed]
  12. P.-A. B???elanger, "On the profile of pulses generated by fiber lasers: the highly-chirped positive dispersion regime (similariton)," Opt. Express 1412174-12182 (2006).
    [CrossRef] [PubMed]
  13. M. Siegel, G. Palmer, A. Steinmann, M. Pospiech, and U. Morgner, "Theoretical and experimental limits of cavity-dumping in passively mode-locked thin-disk oscillators," Opt. Express 15, 16860-16869 (2007).
    [CrossRef] [PubMed]
  14. V. L. Kalashnikov, A. Fernandez and A. Apolonski, "Higher-order dispersion in chirped-pulse oscillator," Opt. Express 16, 4206-4216 (2008).
    [CrossRef] [PubMed]
  15. A. Ruehl, O. Prochnow,M. Schultz, D. Wandt, and D. Kracht, "Impact of third-order dispersion on the generation of wave-breaking free pulses in ultrafast fiber lasers," Opt. Lett. 322590-2592 (2007).
    [CrossRef] [PubMed]
  16. G. Palmer, M. Siegel, A. Steinmann, and U. Morgner, "Microjoule pulses from a passively mode-locked Yb:KYW thin disk oscillator with cavity-dumping," Opt. Lett. 32, 1593-1595 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (5)

2006 (3)

2005 (3)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

A. Killi, A. Steinmann, J. D¨orring, U. Morgner, M.J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

2004 (1)

F. O¨. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

1993 (1)

Apolonski, A.

V. L. Kalashnikov, A. Fernandez and A. Apolonski, "Higher-order dispersion in chirped-pulse oscillator," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Burgoyne, B.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

D¨orring, J.

Dekorsy, T.

Dewald, S.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

Emons, M.

Fallnich, C.

Fernandez, A.

V. L. Kalashnikov, A. Fernandez and A. Apolonski, "Higher-order dispersion in chirped-pulse oscillator," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Godbout, N.

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

Hideur, A.

Kalashnikov, V. L.

V. L. Kalashnikov, A. Fernandez and A. Apolonski, "Higher-order dispersion in chirped-pulse oscillator," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Killi, A.

Kleinbauer, J.

Kopf, D.

Kracht, D.

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

Lacroix, S.

Lang, T.

Lederer, M.

Lederer, M.J.

Limpert, J.

Morgner, U.

Moshammer, R.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Neuhaus, J.

O¨, F.

F. O¨. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Ortac¸, B.

Palmer, G.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Pospiech, M.

Prochnow, O.

Proktor, B.

Ruehl, A.

Schmidt, O.

Schr¨oter, C.D.

Schreiber, T.

Schultz, M.

Schultze, M.

Siegel, M.

Steinmann, A.

Sutter, D.

T¨unnermann, A.

Ullrich, J.

Wandt, D.

Weiler, S.

Westwig, E.

Wise, F.

New. J. Phys. (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New. J. Phys. 7, 217 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New. J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

A. Killi, A. Steinmann, J. D¨orring, U. Morgner, M.J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

B. Proktor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993).
[CrossRef]

J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, "Passively mode-locked Yb:YAG thindisk laser with pulse energies exceeding 13 uJ by use of an active multipass geometry," Opt. Lett. 33, 726-728 (2008).
[CrossRef] [PubMed]

S. Dewald, T. Lang, C.D. Schr¨oter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072-2074 (2006).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow,M. Schultz, D. Wandt, and D. Kracht, "Impact of third-order dispersion on the generation of wave-breaking free pulses in ultrafast fiber lasers," Opt. Lett. 322590-2592 (2007).
[CrossRef] [PubMed]

G. Palmer, M. Siegel, A. Steinmann, and U. Morgner, "Microjoule pulses from a passively mode-locked Yb:KYW thin disk oscillator with cavity-dumping," Opt. Lett. 32, 1593-1595 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. O¨. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Other (1)

S. V. Marchese, S. Hashimoto, C.R.E. Baer, M.S. Ruosch, R. Grange, M. Golling, T. S¨udmeyer, U. Keller, G. L´epine, G. Gingras, and B. Witzel, "Passively mode-locked thin disk lasers reach 10 microjoules pulse energy at megahertz repetition rate and drive high field physics experiments," presented at CLEO / Europe 2007, Munich, Germany, 17-22 June 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Comparison between measured (red) and simulated (blue) spectra of the Yb-KYW bulk laser with cavity-dumping. In the experiment the GDD was estimated to be 750 fs2, for the simulation a GDD of 800 fs2 was used.

Fig. 2.
Fig. 2.

Evolution of the spectral shape for different values of the GDD and the pulse energy. For the left picture the GDD was scanned while the output pulse energy was kept constant at 2.1 µJ. On the right hand side the resulting spectra for several different values of both GDD and pulse energy are shown.

Fig. 3.
Fig. 3.

The topmost plot shows the GDD required to achieve stable single pulse operation with a certain pulse energy. The plot in the middle reveals the duration of the chirped pulse, while the last plot gives the dechirped pulse duration.

Tables (3)

Tables Icon

Table 1. Experimental parameter ranges from the Yb:KYW bulk oscillator [8].

Tables Icon

Table 2. Parameter values used in the simulation of the Yb:KYW bulk laser with cavity-dumping.

Tables Icon

Table 3. Parameter values for the simulation of the thin-disk laser in the positive dispersion regime. The gain medium was Yb:KLuW. The small-signal gain along with the 2nd, 3rd and 4th order dispersion were scanned over a wide range.

Metrics