Abstract

Nonlinear optical conversion of 1.064 µm pulses from a Q-switched Nd:YAG laser to the mid-infrared is demonstrated. The experimental setup is based on a two-stage master-oscillator/power-amplifier (MOPA) design with a KTiOPO4 based MOPA in the first stage and a KTiOAsO4/ZnGeP2 based MOPA in the second stage. The setup can be tuned to provide output at 8 µm or in the 3–5 µm wavelength region. We obtain more than 8 mJ at 8 µm, and up to 33 mJ at 3–5 µm. The measured beam quality factors are in the range M 2=2–4 for both wavelength regions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, "Tunable 7-12-μm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals," Opt. Lett. 22, 597-599 (1997).
    [CrossRef] [PubMed]
  2. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, "ZnGeP2 optical parametric oscillator with 3.8-12.4-μm tunability," Opt. Lett. 25, 841-843 (2000).
    [CrossRef]
  3. P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, "20 mJ, 3-5 micron ZnGeP2 Optical Parametric Oscillator Pumped by a 2.09 micron Ho:YAG Laser," in Advanced Solid-State Photonics. Paper PD12.
  4. H. R. Lee, J. Yu, N. P. Barnes, and Y. Bai, "High pulse energy ZnGeP2 singly resonant OPO," in Advanced Solid-State Photonics, (2004) Paper TuC3.
  5. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, "Coupled tandem optical parametric oscillator (OPO): an OPO within an OPO," Opt. Lett. 23, 1262-1264 (1998).
    [CrossRef]
  6. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, "Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator," J. Opt. Soc. Am. B 18, 818-822 (2001).
    [CrossRef]
  7. S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
    [CrossRef]
  8. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "ZGP Mid-Infrared Laser Source Pumped by Nearly-Degenerate PPKTP Parametric Oscillator," in Advanced Solid-State Photonics (2007), Paper TuB22.
  9. A. Godard, "Infrared (2-12 μm) solid-state laser sources: a review," C. R. Physique 8, 1100-1128 (2007).
    [CrossRef]
  10. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, "Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications," J. Opt. Soc. Am. B 12, 2122-2127 (1995).
    [CrossRef]
  11. Y. Ehrlich, S. Pearl, and S. Fastig, "High brightness tunable tandem optical parametric oscillator at 8-12 μm," in Advanced Solid-State Photonics (2004), Paper TuB15.
  12. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system," Opt. Express 15, 14404-14413 (2007).
    [CrossRef]
  13. W. R. Bosenberg and D. R. Guyer, "Broadly tunable, single-frequency optical parametric frequency-conversion system," J. Opt. Soc. Am. B 10, 1716-1722 (1993).
    [CrossRef]
  14. J. C. McCarthy, R. C. Day, and E. P. Chicklis, "Novel, Efficient, High Brightness KTP Optical Parametric Oscillator- Amplifier in single beamline," in Advanced Solid State Lasers 2001 Technical Digest, pp. 656-659.
  15. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, "52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device," Opt. Lett. 31, 3149-3151 (2006).
    [CrossRef] [PubMed]
  16. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, "Tunable, narrow-bandwidth Mid-IR generation in ZnGeP2 crystals pumped by a large aperture periodically poled Mg doped LiNbO3 optical parametric system," in Advanced Solid-State Photonics (2008), Paper MC46.
  17. G. Arisholm, �?. Nordseth, and G. Rustad, "Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality," Opt. Express 12, 4189-4197 (2004).
    [CrossRef] [PubMed]
  18. G. Rustad, S. Nicolas, �?. Nordseth, and G. Arisholm, "High pulse energy mid-infrared laser source," Proc. SPIE 5989, 598904.1-598904.7 (2005).
    [CrossRef]
  19. G. Mennerat and P. Kupecek, "High-energy narrow-linewidth tunable source in the mid infrared," in Advanced Solid State Lasers 1998 Technical Digest, pp. 269-272.
  20. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).
  21. G. Arisholm, "Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators," J. Opt. Soc. Am. B 16, 117-127 (1999).
    [CrossRef]
  22. G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
    [CrossRef]
  23. A. E. Siegman, "How to (Maybe) Measure Laser Beam Quality," in Optical Society of America Annual Meeting (Long Beach, California, 1997).
  24. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
  25. S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, "Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited," Appl. Opt. 42, 4335-4340 (2003).
    [CrossRef] [PubMed]
  26. K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, "Increasing the laser-induced damage threshold of single-crystal ZnGeP2," J. Opt. Soc. Am. B 23, 2310-2316 (2006).
    [CrossRef]

2008

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

2007

A. Godard, "Infrared (2-12 μm) solid-state laser sources: a review," C. R. Physique 8, 1100-1128 (2007).
[CrossRef]

2006

2004

S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
[CrossRef]

G. Arisholm, �?. Nordseth, and G. Rustad, "Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality," Opt. Express 12, 4189-4197 (2004).
[CrossRef] [PubMed]

2003

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, "Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited," Appl. Opt. 42, 4335-4340 (2003).
[CrossRef] [PubMed]

2001

2000

1999

1998

1997

1995

1993

Allik, T. H.

Anstett, G.

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

Arisholm, G.

Armstrong, D.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Bhar, G. C.

Borsutzky, A.

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

Bosenberg, W. R.

Caughey, T.

Chandra, S.

Chong, T. C.

Clark, J. B.

Das, S.

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Drake, T.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Dubois, M.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Fujii, M.

Gangopadhyay, S.

Ganikhanov, F.

Ghosh, C.

Godard, A.

A. Godard, "Infrared (2-12 μm) solid-state laser sources: a review," C. R. Physique 8, 1100-1128 (2007).
[CrossRef]

Guyer, D. R.

Haidar, S.

S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
[CrossRef]

Hutchinson, J. A.

Ishizuki, H.

Ito, H.

S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
[CrossRef]

Johnson, B. C.

Lai, K. S.

Maffetone, J. P.

McPhee, E. S.

Miyamoto, K.

S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
[CrossRef]

Newell, V. J.

Nittmann, M.

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

Nordseth, ??.

Phua, P. B.

Pollak, T. M.

Rines, D. M.

Ruderman, W.

Rustad, G.

Saikawa, J.

Schunemann, P. G.

Setzler, S. D.

Smith, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Taira, T.

Utano, R.

Vodopyanov, K. L.

Wallenstein, R.

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

Wu, R. F.

Zawilski, K. T.

Zwieback, I.

Appl. Opt.

Appl. Phys. B

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

C. R. Physique

A. Godard, "Infrared (2-12 μm) solid-state laser sources: a review," C. R. Physique 8, 1100-1128 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system," Proc. SPIE 6875, 687507 (2008).

Other

A. E. Siegman, "How to (Maybe) Measure Laser Beam Quality," in Optical Society of America Annual Meeting (Long Beach, California, 1997).

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, "20 mJ, 3-5 micron ZnGeP2 Optical Parametric Oscillator Pumped by a 2.09 micron Ho:YAG Laser," in Advanced Solid-State Photonics. Paper PD12.

H. R. Lee, J. Yu, N. P. Barnes, and Y. Bai, "High pulse energy ZnGeP2 singly resonant OPO," in Advanced Solid-State Photonics, (2004) Paper TuC3.

Y. Ehrlich, S. Pearl, and S. Fastig, "High brightness tunable tandem optical parametric oscillator at 8-12 μm," in Advanced Solid-State Photonics (2004), Paper TuB15.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system," Opt. Express 15, 14404-14413 (2007).
[CrossRef]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, "Tunable, narrow-bandwidth Mid-IR generation in ZnGeP2 crystals pumped by a large aperture periodically poled Mg doped LiNbO3 optical parametric system," in Advanced Solid-State Photonics (2008), Paper MC46.

G. Rustad, S. Nicolas, �?. Nordseth, and G. Arisholm, "High pulse energy mid-infrared laser source," Proc. SPIE 5989, 598904.1-598904.7 (2005).
[CrossRef]

G. Mennerat and P. Kupecek, "High-energy narrow-linewidth tunable source in the mid infrared," in Advanced Solid State Lasers 1998 Technical Digest, pp. 269-272.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "ZGP Mid-Infrared Laser Source Pumped by Nearly-Degenerate PPKTP Parametric Oscillator," in Advanced Solid-State Photonics (2007), Paper TuB22.

J. C. McCarthy, R. C. Day, and E. P. Chicklis, "Novel, Efficient, High Brightness KTP Optical Parametric Oscillator- Amplifier in single beamline," in Advanced Solid State Lasers 2001 Technical Digest, pp. 656-659.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic overview of the two-stage MOPA.

Fig. 2.
Fig. 2.

Measured output energy in the forward direction from the KTA OPO for (a) an idler wavelength of 2.8 µm, and (b) an idler wavelength of 3.7 µm.

Fig. 3.
Fig. 3.

Schematic overview of the second MOPA stage. M1 and M2 form the resonator of the master oscillator (KTA OPO), L1 and L2 expand the seed beam for the ZGP OPA, a long-pass filter (LP) removes the 1.7 µm or 1.5 µm beam, and M3 combines the seed and the pump for the ZGP OPA.

Fig. 4.
Fig. 4.

Measured pump fluence at the ZGP crystal. The data is normalised to a unity peak value.

Fig. 5.
Fig. 5.

Simulated and measured output from the ZGP OPA, for a DFG wavelength of 8 µm. The data is shown for a 10 mm long ZGP crystal (left column) and for a 14 mm long ZGP crystal (right column), for different seed energies. (a) Simulated quantum efficiency, 10 mm ZGP. (b) Simulated quantum efficiency, 14 mm ZGP. (c) Simulated output at 8 µm, 10 mm ZGP. (d) Simulated output at 8 µm, 14 mm ZGP. (e) Measured output at 8 µm, 10 mm ZGP. (f) Measured output at 8 µm, 14 mm ZGP. A perfect AR coating for the ZGP crystal is assumed in (a) and (b), while a measured coating reflection at 8 µm of 2.3% and 13.2% is taken into account in (c) and (d), respectively.

Fig. 6.
Fig. 6.

Measured beam fluence at 8 µm after an f=244 mm lens. (a) Waist. (b) Corresponding far field. The data is normalised to a unity peak value.

Fig.7.
Fig.7.

Measured spectrum at 8 µm.

Fig. 8.
Fig. 8.

Simulated and measured output from the ZGP OPA in the 3–5 µm region. The data is shown for a 10 mm long ZGP crystal. (a) Simulated quantum efficiency. (b) Corresponding output at 3-5 µm. (c) Measured output at 3-5 µm at full seed power, parasitic idler when the seed is blocked, and parasitic idler at full seed power. A perfect AR coating for the ZGP crystal is assumed in (a) and (b).

Fig. 9.
Fig. 9.

Measured beam fluence at 3.7 µm and 4.7 µm after an f=518 mm and f=408 mm lens, respectively. (a) Waist, 3.7 µm beam. (b) Corresponding far field. (c) Waist, 4.7 µm beam. (d) Corresponding far field. The data is normalised to a unity peak value.

Fig. 10.
Fig. 10.

Measured spectrum at (a) 3.7 µm and (b) 4.7 µm.

Metrics