Abstract

We propose a new method of all-optical buffering with ultra-small core photonic crystal fibers (PCFs) based on stimulated Brillouin scattering. The large refractive index contrast between the near-hollow cladding and the pure-silica core contributes to high nonlinearity of the PCF. Considering the unusual gain spectrum of the ultra-small core PCF, we numerically investigate the influence of these factors to the buffering efficiency. A PCF with a length of 1 meter and a core diameter of 1.06 micrometer is simulated as the storage medium in this paper. It is shown that we can obtain a good buffering efficiency under a very low control power of 2 watt, which promises a significant improvement for the all-optical communication system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A. 62, 013821 (2000).
    [CrossRef]
  2. C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  3. Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  4. Q2. Z. Zhu, D. J. Gauthier, and R W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]
  5. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  6. A.  Kobyakov, S.  Kumar, D. Q.  Chowdhury, A. B.  Ruffin, M.  Sauer, S. R.  Bickham, and R.  Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express  13, 5338-5346 (2005).
    [CrossRef] [PubMed]
  7. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, "Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber," Opt. Express 15, 15517-15522 (2007).
    [CrossRef] [PubMed]
  8. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
    [CrossRef] [PubMed]
  9. J. C. Beugnot, T. Sylvestre, and H. Maillotte, "Guided acoustic wave Brillouin scattering in photonic crystal fibers," Opt. Lett. 32, 17-19 (2007).
    [CrossRef]
  10. Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
    [CrossRef]
  11. K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
    [CrossRef]
  12. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fiber waveguides," Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  13. N. A. Mortensen, "Effective area of photonic crystal fiber," Opt. Express 10, 341-348 (2002).
    [PubMed]
  14. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition, (Academic Press, San Diego 2001), Chapter 9.
  16. M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]
  17. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
    [CrossRef]
  18. P. St. J. Russell, E. Marin, A. Diez, S. Guenneau, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003).
    [CrossRef] [PubMed]
  19. E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
    [CrossRef]
  20. Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  21. R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
    [CrossRef]

2007

2006

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

2005

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

A.  Kobyakov, S.  Kumar, D. Q.  Chowdhury, A. B.  Ruffin, M.  Sauer, S. R.  Bickham, and R.  Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express  13, 5338-5346 (2005).
[CrossRef] [PubMed]

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2001

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

2000

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A. 62, 013821 (2000).
[CrossRef]

1997

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

1992

R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
[CrossRef]

1972

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Alasia, D.

Behroozi, C. H.

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Benchabane, S.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Beugnot, J. C.

Bickham, S. R.

Bigelow, M. S.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Birks, T. A.

Boyd, R W.

Q2. Z. Zhu, D. J. Gauthier, and R W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Boyd, R. W.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Broderick, N. G. R.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Chowdhury, D. Q.

Chu, R.

R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
[CrossRef]

Dainese, P.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

Diez, A.

Dudley, J. M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Falk, J.

R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
[CrossRef]

Fleischhauer, A.

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Fragnito, H. L.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

Furusawa, K.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Gaeta, A. L.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Q2. Z. Zhu, D. J. Gauthier, and R W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Guenneau, S.

Hau, L. V.

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Joly, N.

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Kanefsky, M.

R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A. 62, 013821 (2000).
[CrossRef]

Kibler, B.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Knight, J. C.

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

Kobyakov, A.

Kumar, S.

Laude, V.

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, "Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber," Opt. Express 15, 15517-15522 (2007).
[CrossRef] [PubMed]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Leon-Saval, S. G.

Liu, C.

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Mafang, S. F.

Maillotte, H.

Mair, A.

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Marin, E.

Mason, M. W.

Mishra, R.

Monro, T. M.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Monteville, A.

Mortensen, N. A.

Movchan, A. B.

Mussot, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Okawachi, Y.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Phillips, D. F.

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Poletti, F.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Provino, L.

Richardson, D. J.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Ruffin, A. B.

Russell, P. St. J.

Sauer, M.

Schweinsberg, A.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Stolen, R. H.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Sutton, Z.

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Sylvestre, T.

Thévenaz, L.

Traynor, N.

Wadsworth, W. J.

Walsworth, R. L.

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, "Raman-like light scattering from acoustic photonic crystal fiber," Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

Wilm, M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Yusoff, Z.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

Zhu, Z.

Q2. Z. Zhu, D. J. Gauthier, and R W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

J. Appl. Phys.

R. Chu, M. Kanefsky, and J. Falk, "Numerical study of transient stimulated Brillouin scattering," J. Appl. Phys. 71, 4653-4658 (1992).
[CrossRef]

J. Lightwave Technol.

P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Nature

C. Liu, Z. Sutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Nature Phys.

Q3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nature Phys. 2, 388-392 (2006).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000).
[CrossRef]

Opt. Lett.

K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, "Brillouin characterization of holey optical fibres," Opt. Lett. 17, 2541-2543 (2006).
[CrossRef]

J. C. Beugnot, T. Sylvestre, and H. Maillotte, "Guided acoustic wave Brillouin scattering in photonic crystal fibers," Opt. Lett. 32, 17-19 (2007).
[CrossRef]

Phys. Rev. A.

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A. 62, 013821 (2000).
[CrossRef]

Phys. Rev. B

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Phys. Rev. Lett.

Q1. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science

Q2. Z. Zhu, D. J. Gauthier, and R W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition, (Academic Press, San Diego 2001), Chapter 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1. .
Fig.1. .

a) Across section of the photonic crystal fiber. The black area is silica and the white circles are air holes. The interhole space is 1 µm and the hole diameter is 0.94 µm. (b) Effective refractive index for different wavelengths of the incident pulses. The inset is fundamental mode for 1.55-µm-wavelength light.

Fig. 2.
Fig. 2.

The Brillouin gain spectrums for PCFs with core diameters 1.06 µm and 9 µm. For the large-core PCF, the Brillouin frequency shift is 11.2 GHz with a peak gain ~3.11×10-11m/W. In contrast, the peak gains for small-core PCF are about 2.97×10-11, 1.84×10-11 and 2.72×10-11m/W, with frequency shifts 9.76, 9.95 and 10.22 GHz, respectively.

Fig. 3.
Fig. 3.

(a) Data pulse. (b) Control pulses.

Fig. 4.
Fig. 4.

Retrieval efficiencies for different gain peak with different control power and buffering time.

Fig. 5.
Fig. 5.

Simulation of data storage and retrieval. (a) A 2-ns-long data pulse with rectangular shape. (b) A 2-ns-long data pulse with smooth shape. The retrieved data pulses are scaled by a factor of 2 to the right of the dashed line for clarity.

Fig. 6.
Fig. 6.

Simulation of data storage and retrieval. (a) Two rectangular-shaped data pulses with a 2-ns length and a 2-ns interval. (b) Two smooth-shaped data pulses with a 2-ns length and a 2-ns interval. The retrieved data pulses are scaled by a factor of 5 to the right of the dashed line for clarity.

Fig. 7.
Fig. 7.

Simulation of data storage and retrieval. (a) Three rectangular-shaped data pulses with a 2-ns length and a 2-ns interval. (b) Three smooth-shaped data pulses with a 2-ns length and a 2-ns interval. The retrieved data pulses are scaled by a factor of 10 to the right of the dashed line for clarity.

Tables (1)

Tables Icon

Table 1. Control power for the first three peak efficiencies corresponding to different gain peak, compared between the theoretical and stimulant results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n g = n f λ dn f d λ
g B ( ν ) = g B ( ν B ) ( Δ ν B 2 ) 2 ( ν ν B ) 2 + ( Δ ν B 2 ) 2
g B ( ν B ) = 2 π n 7 p 12 2 c λ p 2 ρ 0 ν A Δ ν B
{ A d z + 1 ν g A d t = η g B 2 A c Q A c z + 1 ν g A c t = η g B 2 A d Q * Q t + Γ Q = Γ A d A c *

Metrics