Abstract

A single-step fast-writing method of burst ultrafast laser modification was applied to form a mesh network of multi-wavelength Bragg grating waveguides in bulk fused silica glass. Strain-optic and thermo-optic responses of the laser-written internal sensors are reported for the first time. A dual planar layout provided independent temperature- and strain-compensated characterization of temperature and strain distribution with coarse spatial resolution. The grating responses were thermally stable to 500°C. To our best knowledge, the grating network represents the first demonstration of 3D distributed optical sensing network in a bulk transparent medium. Such 3D grating networks open new directions for strain and temperature sensing in optical circuits, optofluidic, MEMS or lab-on-a-chip microsystems, actuators, and windows and other large display or civil structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  2. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  3. W. W. Morey, J. R. Dunphy, and G. Meltz, "Multiplexing fiber Bragg grating sensors," in Distributed and Multiplexed Fiber Optic Sensors (Boston, MA, USA, 1992), pp. 216-224.
  4. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
    [CrossRef]
  5. S. Theriault, K. O. Hill, D. C. Johnson, J. Albert, F. Bilodeau, G. Drouin, and A. Beliveau, "High-g accelerometer based on in-fiber Bragg grating: A novel detection scheme," in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications (SPIE, Bellingham, WA, USA, Ottawa, Canada, 1998), pp. 926-930.
  6. A. D. Kersey, "A review of recent developments in fiber optic sensor technology," Opt. Fiber Technol.: Materials, Devices and Systems 2, 291-317 (1996).
    [CrossRef]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  8. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
    [CrossRef]
  9. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
    [CrossRef]
  10. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
    [CrossRef] [PubMed]
  11. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
    [CrossRef]
  12. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
    [CrossRef] [PubMed]
  13. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003).
  14. H. Zhang, S. M. Eaton, and P. R. Herman, "Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser," Opt. Lett. 32, 2559-2561 (2007).
    [CrossRef] [PubMed]
  15. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, "Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses," Opt. Express 15, 4182-4191 (2007).
    [CrossRef] [PubMed]
  16. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, "Femtosecond laser direct-writing of multi-wavelength Bragg grating waveguides in bulk glass," Opt. Lett. 31, 3495-3497 (2006).
    [CrossRef] [PubMed]
  17. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006).
    [CrossRef] [PubMed]
  18. A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309 (1997).
    [CrossRef]
  19. W. W. Morey, G. Meltz, and W. H. Glenn, "Bragg-grating temperature and strain sensors," in Optical Fiber Sensors. Proceedings of the 6th International Conference. OFS '89(Springer-Verlag, Paris, France, 1989), pp. 526-531.
  20. N. F. Borrelli, and R. A. Miller, "Determination of Individual Strain-Optic Coefficients of Glass by an Ultrasonic Technique," Appl. Opt. 7, 745-750 (1968).
    [CrossRef] [PubMed]
  21. "http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_Standard_ProductSheet.pdf."
  22. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (6)

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, "Femtosecond laser direct-writing of multi-wavelength Bragg grating waveguides in bulk glass," Opt. Lett. 31, 3495-3497 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

2005 (1)

2003 (1)

1997 (3)

A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

1996 (2)

A. D. Kersey, "A review of recent developments in fiber optic sensor technology," Opt. Fiber Technol.: Materials, Devices and Systems 2, 291-317 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

1993 (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

1968 (1)

Ams, M.

Borrelli, N. F.

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
[CrossRef] [PubMed]

Cerullo, G.

Chen, W.-J.

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

Davis, K. M.

De Silvestri, S.

Eaton, S. M.

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Herman, P. R.

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Ho, S.

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Itoh, K.

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

Kersey, A. D.

A. D. Kersey, "A review of recent developments in fiber optic sensor technology," Opt. Fiber Technol.: Materials, Devices and Systems 2, 291-317 (1996).
[CrossRef]

Laporta, P.

Li, J.

Marangoni, M.

Marshall, G. D.

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Miller, R. A.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Nejadmalayeri, A. H.

Ng, M. L.

Nishii, J.

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
[CrossRef] [PubMed]

Osellame, R.

Othonos, A.

A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

Polli, D.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Ramponi, R.

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

Sowa, S.

Sugimoto, N.

Taccheo, S.

Tamaki, T.

Tunnermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
[CrossRef] [PubMed]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

Will, M.

Withford, M. J.

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Zhang, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, "Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Devices and Systems (1)

A. D. Kersey, "A review of recent developments in fiber optic sensor technology," Opt. Fiber Technol.: Materials, Devices and Systems 2, 291-317 (1996).
[CrossRef]

Electron. Lett. (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-Fiber Grating High-Pressure Sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

MRS Bulletin (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bulletin 31, 620-625 (2006).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

Other (4)

W. W. Morey, G. Meltz, and W. H. Glenn, "Bragg-grating temperature and strain sensors," in Optical Fiber Sensors. Proceedings of the 6th International Conference. OFS '89(Springer-Verlag, Paris, France, 1989), pp. 526-531.

"http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_Standard_ProductSheet.pdf."

W. W. Morey, J. R. Dunphy, and G. Meltz, "Multiplexing fiber Bragg grating sensors," in Distributed and Multiplexed Fiber Optic Sensors (Boston, MA, USA, 1992), pp. 216-224.

S. Theriault, K. O. Hill, D. C. Johnson, J. Albert, F. Bilodeau, G. Drouin, and A. Beliveau, "High-g accelerometer based on in-fiber Bragg grating: A novel detection scheme," in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications (SPIE, Bellingham, WA, USA, Ottawa, Canada, 1998), pp. 926-930.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A 3-D sensor network in a fused silica plate (50 mm×50 mm×1 mm) consisting of multi-wavelength BGW segments (red lines) laid out as shown in the schematic of (a) and the photograph of (b). Single-mode fibers are shown epoxied for butt-coupling to six of the BGW segments here.

Fig. 2.
Fig. 2.

Reflection spectrum of BGW segments H1, H2, and H3 (left to right).

Fig. 3.
Fig. 3.

BGW resonance wavelength plotted with respect to temperature of the hotplate.

Fig. 4.
Fig. 4.

Observed Bragg wavelength shift and the calculated local temperature of BGW segments (a) H1, H2, and H3, and (b) V1, V2, V3, in the 3D sensor network, for hotplate temperature from 25 to 125 °C.

Fig. 5.
Fig. 5.

Beam bending arrangement (a) for optical strain sensing in a 3-D BGW network and correspond Bragg wavelength shifts (b) under increasing beam displacement

Fig. 6.
Fig. 6.

Microscope images (top) and mode profiles (bottom) of BGWs written in fused silica glass by burst writing at 60% AOM duty cycle, following various heating cycles.

Tables (1)

Tables Icon

Table 1. Grating strength and propagation losses of the burst written fused silica BGW under various heat cycles.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ = 2 n eff v / f
Δ λ B = 2 ( Λ n l + n Λ l ) Δ l + 2 ( Λ n T + n Λ T ) Δ T
Δ λ B st = λ B 1 p e ε z
Δ λ B th = λ B α + ζ Δ T
D = R R cos θ = 2 R sin 2 θ / 2 = R θ 2 / 2 = L 2 / 8 R ,
ε = h R = 8 Dh L 2 .

Metrics