Abstract

We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrowband fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror. The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse bandwidth and duration. Our experimental results are in good agreement with the theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ilm, F. �?. Ilday, and F. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003).
    [CrossRef]
  2. C. K. Nielsen, B. Ortac¸, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  3. B. Ortac¸, M. Pl¨otner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007).
    [CrossRef]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
    [CrossRef] [PubMed]
  5. J. Lægsgaard, "Control of fiber laser mode-locking by narrow-band Bragg gratings," J. Phys. B 41, 095401-1-10 (2008).
  6. http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf.
  7. http://www.nufern.com/fiber detail.php/84.
  8. http://www.crystal-fibre.com/datasheets/HC-1060-02.pdf.
  9. J.T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, "Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression," Opt. Express 16, 9986-9995 (2008).
    [CrossRef] [PubMed]
  10. K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
    [CrossRef]
  11. G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).
  12. P. Ru�?büldt, T. Mans, D. Hoffmann, and R. Poprawe, "High Power Yb:YAG Innoslab fs-Amplifier," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (Optical Society of America, 2008), paper CTuK5.

2008 (2)

2007 (1)

2005 (1)

2004 (1)

G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).

2003 (2)

1980 (1)

K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
[CrossRef]

Hall, G.E.

K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
[CrossRef]

Hein, J.

G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).

Hohmuth, R.

Houmann, A.

Ilday, F. ??.

Ilm, H.

Kenney-Wallace, G.A.

K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
[CrossRef]

Kristensen, J.T.

Lægsgaard, J.

J. Lægsgaard, "Control of fiber laser mode-locking by narrow-band Bragg gratings," J. Phys. B 41, 095401-1-10 (2008).

Limpert, J.

Liu, X.

Nielsen, C. K.

Nolte, S.

Ortac¸, B.

Paunescu, G.

G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).

Pl¨otner, M.

Richter, W.

Sala, K.L.

K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
[CrossRef]

Schreiber, T.

Suerbrey, R.

G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).

Tünnermann, A.

Turchinovich, D.

Wise, F.

Zellmer, H.

Appl. Phys. B (1)

G. Paunescu, J. Hein, and R. Suerbrey,"100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).

IEEE J. Quantum Electron. (1)

K.L. Sala, G.A. Kenney-Wallace, and G.E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980).
[CrossRef]

J. Phys. B (1)

J. Lægsgaard, "Control of fiber laser mode-locking by narrow-band Bragg gratings," J. Phys. B 41, 095401-1-10 (2008).

Opt. Express (4)

Opt. Lett. (1)

Other (4)

P. Ru�?büldt, T. Mans, D. Hoffmann, and R. Poprawe, "High Power Yb:YAG Innoslab fs-Amplifier," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (Optical Society of America, 2008), paper CTuK5.

http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf.

http://www.nufern.com/fiber detail.php/84.

http://www.crystal-fibre.com/datasheets/HC-1060-02.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

General layout of the laser. FBG - fiber Bragg grating, SESAM - semiconductor saturable absorber mirror, WDM - 980/1060 nm wavelength division multiplexer, PFC-20/80 polarization filter coupler, LD - pump laser diode at 976 nm, PISO - polarization-maintaining isolator, PM SM - polarization-maintaining single-mode fiber. PM HC-PCF-polarization-maintaining hollow-core photonic crystal fiber, OS - optimized splice. Inset: oscilloscope reading of the modelocked pulse train.

Fig. 2.
Fig. 2.

(a) Reflectivity of SESAM and FBG as a function of the respective incident pulse energy. (b) Combined reflectivity of SESAM and FBG as a function of the energy of the pulse incident on SESAM.

Fig. 3.
Fig. 3.

Calculated spectra of the (a) pulses, reflected back into the cavity and (b) pulses, dumped away from the cavity by the FBG as a function of incident pulse energy. Spectral intensity is shown on a 30 dB scale, normalized to the maximum of the strongest reflectivity spectrum. (c) Linear power reflectivity and group delay dispersion of the FBG. (d) Calculated spectra of the pulses reflected back into the cavity (red) and dumped away from the cavity (green) by the FBG for the pulse energies of 166 pJ and 303 pJ. In (a),(b), and (d) the full laser cavity with all its elements is used for the calculations (see text).

Fig. 4.
Fig. 4.

Calculated shapes of the outcoupled pulses of different pulse energies. Inset: pulse duration at FWHM as a function of the pulse energy.

Fig. 5.
Fig. 5.

(a) Normalized spectra measured at the output of the oscillator, end amplifier, and after 9.5 m of HC-PCF, i.e at the output end of the laser. HC-PCF group velocity dispersion (from [8]). (b) Intensity autocorrelation of the pulse measured after the end amplifier, and its Gaussian fit.

Fig. 6.
Fig. 6.

(a) Calculated pulse shapes as a function of the HC-PCF length, on a linear intensity scale. Measured spectrum and deconvoluted pulse duration from Fig. 5 are used as an input for the calculation. (b) Calculated shapes of transform-limited pulse, and of shortest pulse resulting from the HC-PCF propagation model. The pulses are centered at zero time delay for clarity. (c) Measured intensity autocorrelation of the laser pulse after compression in 9.5 m of HC-PCF, and calculated intensity autocorrelations of transform-limited pulse, and of shortest pulse resulting from the HC-PCF propagation model, shown in (b).

Fig. 7.
Fig. 7.

(a) SEM image of the HC-PCF. Courtesy of B.J. Mangan, Crystal Fibre A/S. (b) Measured far-field profile of the laser mode on the logarithmic intensity scale. (c) Cuts through the maximum intensity area of the laser mode profile in vertical and horizontal directions on the linear intensity scale, and their Gaussian fits.

Fig. 8.
Fig. 8.

Dependencies of spectral width at FWHM, and intensity autocorrelation duration of the laser pulse at FWHM on the end amplifier pump power.

Metrics