Abstract

We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO3) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO3 lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Wong, ed. Properties of Lithium Niobate (IEE, London, UK, 2002).
  2. E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
    [CrossRef]
  3. P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
    [CrossRef]
  4. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007).
    [CrossRef] [PubMed]
  5. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
    [CrossRef]
  6. M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
    [CrossRef]
  7. R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
  8. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, "Photorefractive damage resistant Zn-diffused waveguides in MgO:LiNbO3," Opt. Lett. 16, 995-997 (1991).
    [CrossRef] [PubMed]
  9. J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
    [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
    [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  12. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).
  13. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006).
    [CrossRef] [PubMed]
  14. A. H. Nejadmalayeri and P. R. Herman, "Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate," Opt. Express 15, 10842-10854 (2007).
    [CrossRef] [PubMed]
  15. L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
    [CrossRef]
  16. J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
    [CrossRef]
  17. G. Zhou and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Opt. Lett. 31, 18 (2006)
  18. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
    [CrossRef]
  19. G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.
  20. J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
    [CrossRef]
  21. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).
  22. H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
    [CrossRef]
  23. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
    [CrossRef]
  24. A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
    [CrossRef]
  25. W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008).
    [CrossRef]
  26. X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
    [CrossRef]
  27. T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
    [CrossRef]
  28. V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).
  29. Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
    [CrossRef]
  30. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
    [CrossRef]
  31. A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986).
    [CrossRef]
  32. S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004).
    [CrossRef]
  33. C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
    [CrossRef]
  34. I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
    [CrossRef]
  35. R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
    [CrossRef]
  36. W. D. Johnston Jr., "Nonlinear Optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals," Phys. Rev. B 1, 3494-3503 (1970).
  37. C. Kittel, "Introduction to Solid State Physics," 8th Ed. Wiley, USA, (2005).
  38. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
    [CrossRef]
  39. D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
    [CrossRef]
  40. W. Yang, E. Bricchi, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
    [CrossRef] [PubMed]
  41. E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006)
    [CrossRef]
  42. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
    [CrossRef]

2008

W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

2007

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007).
[CrossRef] [PubMed]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

A. H. Nejadmalayeri and P. R. Herman, "Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate," Opt. Express 15, 10842-10854 (2007).
[CrossRef] [PubMed]

J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

2006

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006).
[CrossRef] [PubMed]

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

G. Zhou and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Opt. Lett. 31, 18 (2006)

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

W. Yang, E. Bricchi, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
[CrossRef] [PubMed]

E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006)
[CrossRef]

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

2005

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

2004

L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004).
[CrossRef]

2003

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

2001

I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
[CrossRef]

2000

V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).

1998

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

1997

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
[CrossRef]

1996

1992

M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
[CrossRef]

1991

1986

A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986).
[CrossRef]

1985

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).

1970

W. D. Johnston Jr., "Nonlinear Optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals," Phys. Rev. B 1, 3494-3503 (1970).

1966

T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
[CrossRef]

Abdi, F.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Agulló Rueda, F.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Agulló-Rueda, F.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

Aillerie, M.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Aitchison, J. S.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Arai, A.

Arias, I.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Aschieri, P.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Baglin, J. E. E.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Bakhru, H.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Bakhru, S.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Baldi, P.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Ballman, A. A.

A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Bookey, H. T.

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Borstel, G.

V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).

Bourson, P.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Bovatsek, J.

Bricchi, E.

W. Yang, E. Bricchi, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
[CrossRef] [PubMed]

E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006)
[CrossRef]

Burghoff, J.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Cabrera, J. M.

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
[CrossRef]

Caciuc, V.

V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Cantelar, E.

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

Chen, F.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007).
[CrossRef] [PubMed]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

Chong, T. C.

L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

Cino, A. C.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Cussó, F.

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Dai, Y.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

Damen, T. C.

T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
[CrossRef]

Davis, K. M.

De Micheli, M.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Digonnet, M. J. F.

Djukic, D.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Dunn, K.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

El Hadi, K.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Fontana, M. D.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

García Blanco, S.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Glatzel, U.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Gorelik, T.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Gu, M.

G. Zhou and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Opt. Lett. 31, 18 (2006)

Gui, L.

L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

Guilbert, L.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

Hempstead, M.

M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
[CrossRef]

Herman, P. R.

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Hu, X.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

Huang, M.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Jaque, D.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Jayaraman, A.

A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986).
[CrossRef]

Jian, C. L

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

Johnston, W. D.

W. D. Johnston Jr., "Nonlinear Optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals," Phys. Rev. B 1, 3494-3503 (1970).

Kar, A. K.

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Kazansky, P.

W. Yang, E. Bricchi, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
[CrossRef] [PubMed]

E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006)
[CrossRef]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008).
[CrossRef]

Kellok, A. J.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004).
[CrossRef]

Laulicht, B.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Lee, Y. S.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Liarokapis, E.

I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
[CrossRef]

Lifante, G.

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Liu, H.

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Lu, F.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

Lu, Q. M.

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Méndez, C.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Merchant, C. A.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Miura, K.

Moretti, P.

S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004).
[CrossRef]

Nejadmalayeri, A. H.

Nolte, S.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Olivares, J.

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
[CrossRef]

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

Osgood, R.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Ostrowsky, D. B.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Pernas, P. L.

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Polgar, K.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Porto, S. P. S.

T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
[CrossRef]

Postnikov, A. V.

V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).

Psaila, N. D.

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Qiu, J.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Rams, J.

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
[CrossRef]

Reekie, L.

M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Ródenas, A.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Roso, L.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Roth, R. M.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Sanz García, J. A.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Savatinova, I.

I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
[CrossRef]

Savova, I.

I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
[CrossRef]

Shaw, H. J.

Shimotsuma, Y.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).

Song, J.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

Sugimoto, N.

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

Taylor, R. S.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

Tell, B.

T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
[CrossRef]

Thomson, P. R.

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Torchia, G. A.

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Tuennermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Tünnermann, A.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
[CrossRef]

Wang, K. M.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007).
[CrossRef] [PubMed]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Wang, L.

Wang, L. L.

Wang, X. L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007).
[CrossRef] [PubMed]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Wilkinson, J. S.

M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
[CrossRef]

Will, M.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Wu, L.

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

Xu, B. X.

L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

Yang, L.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

Yang, W.

Young, W. M.

Zhang, Y.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

Zhou, G.

G. Zhou and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Opt. Lett. 31, 18 (2006)

Zhu, C.

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

App. Phys. A

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).

Appl. Phys. A

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).

Appl. Phys. A.

J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007).
[CrossRef]

Appl. Phys. B

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).

Appl. Phys. Let.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007)
[CrossRef]

Appl. Phys. Lett.

C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006)
[CrossRef]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003)
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008).
[CrossRef]

E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005).
[CrossRef]

Electron. Lett.

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007).
[CrossRef]

IEEE Photon. Techol. Lett.

M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992).
[CrossRef]

J. Appl. Phys.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986).
[CrossRef]

A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006).
[CrossRef]

X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007).
[CrossRef]

J. Phys. Cond. Matter.

Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006).
[CrossRef]

J. Phys. D. Appl. Phys.

G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.

Nature Photon.

W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008).
[CrossRef]

Opt. Eng.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mat.

I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001).
[CrossRef]

Opt. Mater.

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Phys. Rev.

T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966).
[CrossRef]

Phys. Rev. B

V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007).
[CrossRef]

W. D. Johnston Jr., "Nonlinear Optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals," Phys. Rev. B 1, 3494-3503 (1970).

Phys. Stat. Sol.

S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004).
[CrossRef]

Other

C. Kittel, "Introduction to Solid State Physics," 8th Ed. Wiley, USA, (2005).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
[CrossRef]

K. K. Wong, ed. Properties of Lithium Niobate (IEE, London, UK, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical transmission image of the cross section of the laser modification tracks obtained at the laser exposure conditions of 700 kHz, 46 mm/s and 500 nJ/pulse. The waveguide writing laser was circularly polarized and incident from the top (-c direction), the sample was scanned along the x-direction. Dashed circle indicates the spatial location of the created waveguide whereas Spots 1, 2 and 3 indentifies three modified zones.

Fig. 2.
Fig. 2.

Typical micro-Raman spectrum recorded from a non-irradiated volume of the LiNbO3 sample and labeled with the three main phonon modes accessible for the x(zz)x Raman configuration.

Fig. 3.
Fig. 3.

Spatial map of the intensity, energy shift and spectral linewidth (full width at half maximum; FWHM) of the A1(TO1), A1(TO2) and A1(TO4) phonon modes recorded from the lowest loss laser-formed waveguide (700 kHz, 46 mm/s and 500 nJ). The spatial location of the waveguide (W) and the three laser modified spots (1, 2 and 3) is labeled. Scale bar is 10 µm for all images.

Fig. 4.
Fig. 4.

Spatial distribution (a) of the A1(TO4) phonon mode intensity obtained inside Spot 1 for a waveguide yielding the lowest propagation loss (exposure conditions: 700 kHz, 46 mm/s and 500 nJ). The periodic bulk micro-structure is noted by the lowering of the Raman intensity (blue areas), which is clearly periodic in the intensity line profile (b) recorded along the white arrow direction noted in (a).

Fig. 5.
Fig. 5.

Intensity of the A1(TO4) phonon mode observed in the first modified zone as a function of the pulse energy (a) for a fixed repetition rate (700 kHz) and translation speed (46 mm/s) and as a function of the writing speed (b) for a fixed pulse energy (500 nJ) and repetition rate (700 kHz). In both graphs, the blue rectangles denote the writing conditions leading to the lowest waveguide propagation losses.

Tables (1)

Tables Icon

Table 1: Mechanisms of refractive index change in lithium niobate

Metrics