Abstract

Optically corrected pickup method of both virtual and real objects for integral imaging is proposed. The proposed pickup system has imbricate view volumes which are equivalent to those in the integral imaging display. Therefore, there is no distortion resulting from the discord in directions of elemental image between pickup and display. In this system, the view volumes are transformed by 4f optics and the directions of view are defined by lens array and telecentric lens. Without computational cost for compensation, the pickup of both real and virtual objects is confirmed experimentally.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  2. H. Liao, M. Iwahara, H. Nobuhiko, and T. Dohi, "High-quality integral videography using a multiprojector," Opt. Express 12, 1067-1076 (2004).
    [CrossRef] [PubMed]
  3. B. Lee, J.-H. Park, and S.-W. Min, "Three-dimensional display and information processing based on integral imaging," in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333-378.
    [CrossRef]
  4. D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
    [CrossRef]
  5. S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
    [CrossRef]
  6. D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
    [CrossRef]
  7. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  8. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for three-dimensional images," Appl. Opt. 37, 2034-2045 (1998).
    [CrossRef]
  9. J.-H. Park, S. Jung, H. Choi, and B. Lee, "Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching," Appl. Opt. 41, 6875-6883 (2002).
    [CrossRef] [PubMed]
  10. J. -H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express 12, 6020-6032 (2004).
    [CrossRef] [PubMed]
  11. R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez-Corral, and B. Javidi, "Optically-corrected elemental images for undistorted Integral image display," Opt. Express 14, 9657-9663 (2006).
    [CrossRef] [PubMed]
  12. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system," Opt. Express 15, 16255-16260 (2007).
    [CrossRef] [PubMed]
  13. J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, "Camera with inverted perspective projection view volume array for integral imaging," The 6th International Conference on Optics-Photonics Design and Fabrication, Taipei, Taiwan, pp. 553-554, June 2008.
  14. S.-W. Min, J. Hong, and B. Lee, "Analysis of an optical depth converter used in a three-dimensional integral imaging system," Appl. Opt. 43, 4539-4549 (2004).
    [CrossRef] [PubMed]
  15. F. Okano and J. Arai, "Optical shifter for a three-dimensional image by use of a gradient-index lens array," Appl. Opt. 41, 4140-4147 (2002).
    [CrossRef] [PubMed]
  16. J.-S. Jang and B. Javidi, "Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution," Opt. Eng. 41, 2568-2571 (2002).
    [CrossRef]
  17. J.-S. Jang and B. Javidi, "Three-dimensional projection integral imaging using micro-convex-mirror arrays," Opt. Express 12, 1077-1083 (2004).
    [CrossRef] [PubMed]
  18. J. Arai, H. Kawai, M. Kawakita, and F. Okano, "Depth-control method for integral imaging," Opt. Lett. 33, 279-281 (2008).
    [CrossRef] [PubMed]
  19. J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
    [CrossRef]
  20. J. Arai, H. Kawai, and F. Okano, "Microlens arrays for integral imaging system," Appl. Opt. 45, 9066-9078 (2006).
    [CrossRef] [PubMed]
  21. F. Okano, "Applications of Integral Photography for Real-Time Imaging," in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DTuA1.
  22. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, "Formation of real, orthoscopic integral images by smart pixel mapping," Opt. Express 13, 9175-9180 (2005).
    [CrossRef] [PubMed]

2008

2007

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system," Opt. Express 15, 16255-16260 (2007).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
[CrossRef]

2006

2005

M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, "Formation of real, orthoscopic integral images by smart pixel mapping," Opt. Express 13, 9175-9180 (2005).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

2004

2003

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

2002

1998

1997

Arai, J.

Cho, Y.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Choi, H.

Dohi, T.

Hahn, M.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Hong, J.

Hoshino, H.

Iwahara, M.

Jang, J.-S.

J.-S. Jang and B. Javidi, "Three-dimensional projection integral imaging using micro-convex-mirror arrays," Opt. Express 12, 1077-1083 (2004).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, "Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution," Opt. Eng. 41, 2568-2571 (2002).
[CrossRef]

Javidi, B.

Jung, S.

Kawai, H.

Kawakita, M.

Kim, E.-S.

D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

Kim, J.

Kim, Y.

Lee, B.

D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
[CrossRef]

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

J. -H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, "Three-dimensional display scheme based on integral imaging with three-dimensional information processing," Opt. Express 12, 6020-6032 (2004).
[CrossRef] [PubMed]

S.-W. Min, J. Hong, and B. Lee, "Analysis of an optical depth converter used in a three-dimensional integral imaging system," Appl. Opt. 43, 4539-4549 (2004).
[CrossRef] [PubMed]

J.-H. Park, S. Jung, H. Choi, and B. Lee, "Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching," Appl. Opt. 41, 6875-6883 (2002).
[CrossRef] [PubMed]

Liao, H.

Martinez-Corral, M.

Martinez-Cuenca, R.

Martínez-Cuenca, R.

Min, S.-W.

Navarro, H.

Nobuhiko, H.

Okano, F.

Park, J. -H.

Park, J.-H.

Park, K.-S.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Pons, A.

Saavedra, G.

Shin, D.-H.

D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

Yuyama, I.

Appl. Opt.

Jpn. J. Appl. Phys.

D.-H. Shin, E.-S. Kim, and B. Lee, "Computational reconstruction of three-dimensional objects in integral imaging using lenslet array," Jpn. J. Appl. Phys. 44, 8016-8018 (2005).
[CrossRef]

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, "Enhanced image mapping algorithm for computer-generated integral imaging system," Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, "Parallax-controllable large-depth integral imaging scheme using lenslet array," Jpn. J. Appl. Phys. 46, 5184-5186 (2007).
[CrossRef]

Opt. Eng.

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, "Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution," Opt. Eng. 41, 2568-2571 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

F. Okano, "Applications of Integral Photography for Real-Time Imaging," in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DTuA1.

J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, "Camera with inverted perspective projection view volume array for integral imaging," The 6th International Conference on Optics-Photonics Design and Fabrication, Taipei, Taiwan, pp. 553-554, June 2008.

B. Lee, J.-H. Park, and S.-W. Min, "Three-dimensional display and information processing based on integral imaging," in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333-378.
[CrossRef]

Supplementary Material (3)

» Media 1: AVI (2255 KB)     
» Media 2: AVI (3848 KB)     
» Media 3: AVI (1696 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Distortion in conventional pickup of both virtual and real objects with a large convex lens: view volumes of (a) pickup and (b) InIm display.

Fig. 2.
Fig. 2.

Sub-view volume of an individual lens in InIm display.

Fig. 3.
Fig. 3.

Imbricate view volumes of InIm display.

Fig. 4.
Fig. 4.

Schematic of pickup system with imbricate view volumes.

Fig. 5.
Fig. 5.

Relationship between demanded elemental images and pickup image.

Fig. 6.
Fig. 6.

Photograph of embodied pickup system with imbricate view volumes.

Fig. 7.
Fig. 7.

(a) Raw pickup image and (b) set of flipped elemental images.

Fig. 8.
Fig. 8.

Reconstructed image: (a) the perspective views and (b) (Media 1).

Fig. 9.
Fig. 9.

Configuration of objects with different positions.

Fig. 10.
Fig. 10.

Conventional pickup images with the movable object positioned at (a) z=-30mm, (b) z=0mm, and (c) z=30mm respectively. The elemental images of virtual and real objects are shown in (d) and (e) respectively. And the elemental images of the movable object are shown in (f) and (g) when it is positioned at z=-30mm and z=30mm respectively.

Fig. 11.
Fig. 11.

Proposed pickup images with the movable object positioned at (a) z=-30mm, (b) z=0mm, and (c) z=30mm respectively. The elemental images of virtual and real objects are shown in (d) and (e) respectively. And the elemental images of the movable object are shown in (f) and (g) when it is positioned at z=-30mm and z=30mm respectively.

Fig. 12.
Fig. 12.

(Media 2) Pickup and reconstructed images with the conventional pickup (left) and the proposed pickup (right) according to the position of the movable object.

Fig. 13.
Fig. 13.

(Media 3) Perspective views of reconstructed images at z=-30mm, z=0mm, and z=30mm respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ display = 2 tan 1 ( w 2 f ) .
V i = { ( x , y ) | x x ci z z ci < w 2 f } .
θ pickup = 2 tan 1 ( w 3 f 2 2 f 1 f 3 ) .

Metrics