Abstract

Oxide-aperture vertical-cavity surface-emitting lasers (VCSELs) have been integrated as individual device pills within the dielectric stacks of commercially produced silicon integrated circuits and monolithically connected electrically with the underlying circuitry using technology compatible with wafer-scale processing. The 55 µm diameter, 8 µm tall device pills were bonded in recesses etched to reveal buried contact/bond pads included in the IC layout; the surface was replanarized, contact vias formed, and interconnect metal deposited and patterned. The typical CW threshold current, 1 to 2.5 mA, was the same before and after integration, and integrated devices had thermal impedances similar to devices on their native GaAs substrates.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-integrated short-wavelength hybrid-cavity VCSEL

Emanuel P. Haglund, Sulakshna Kumari, Petter Westbergh, Johan S. Gustavsson, Gunther Roelkens, Roel Baets, and Anders Larsson
Opt. Express 23(26) 33634-33640 (2015)

Automated design of integrated circuits with area-distributed input–output pads

Richard Rozier, Ray Farbarik, Fouad Kiamilev, Jeremy Ekman, Premanand Chandramani, Ashok V. Krishnamoorthy, and Richard Oettel
Appl. Opt. 37(26) 6140-6150 (1998)

A novel 3D stacking method for Opto-electronic dies on CMOS ICs

Pinxiang Duan, Oded. Raz, Barry. E. Smalbrugge, Jeroen Duis, and Harm. J. S Dorren
Opt. Express 20(26) B386-B392 (2012)

References

  • View by:
  • |
  • |
  • |

  1. See for example: Heterogeneous Optoelectronic Integration, E. Towe , ed. (SPIE, Bellingham, WA, 2000).
  2. S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
    [Crossref]
  3. J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
    [Crossref]
  4. C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.
  5. The VCSEL heterostructure was grown by LandMark Optoelectronics Corporation.
  6. The mesas were etched in a solution of H2SO4, H2O2 (30%), and H2O (1:18:20 by volume). The same etchant was used to remove the GaAs substrate.
  7. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
    [Crossref]
  8. WaferBondTM is a product of Brewer Science Incorporated.
  9. T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
    [Crossref]
  10. MOSIS Integrated Circuit Fabrication Service, USC Information Sciences Institute.
  11. J. M. Perkins, “Low Threshold Vertical Cavity Surface Emitting Lasers Integrated onto Si-CMOS ICs Using Novel Hybrid Assembly Techniques,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, August 2007.
  12. G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
    [Crossref]
  13. M. S. Teo, “Development of Pick and Place Assembly Techniques for Monolithic Optopill Integration,” MS. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, January 2005.
  14. The BCB used in this work was Cyclotene 3022-46 Resin produced by Dow Chemical Company.
  15. J. M. Perkins and C. G. Fonstad, manuscript in preparation.
  16. C. G. Fonstad, “Optical Solderb Bumps: A Modular Approach to Monolithic Optoelectonics Integration,” International Semiconductor Device Research Symposium, (2001) 584–588.

2006 (1)

T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
[Crossref]

2001 (1)

C. G. Fonstad, “Optical Solderb Bumps: A Modular Approach to Monolithic Optoelectonics Integration,” International Semiconductor Device Research Symposium, (2001) 584–588.

1997 (1)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

1995 (2)

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

1993 (1)

G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
[Crossref]

Ashby, C. I. H.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Atmaca, E.

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Choquette, K. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Daryanani, S.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Droopad, R.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Fathollahnejad, H.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Fonstad, C. G.

T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
[Crossref]

C. G. Fonstad, “Optical Solderb Bumps: A Modular Approach to Monolithic Optoelectonics Integration,” International Semiconductor Device Research Symposium, (2001) 584–588.

J. M. Perkins and C. G. Fonstad, manuscript in preparation.

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

Geib, K. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Giziewicz, W.

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

Hadley, M. A.

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Kubes, A.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Lee, C.

G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
[Crossref]

Maracas, G. N.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Mathine, D. L.

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

Matijasevic, G. S.

G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
[Crossref]

Perkins, J.

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

Perkins, J. M.

J. M. Perkins, “Low Threshold Vertical Cavity Surface Emitting Lasers Integrated onto Si-CMOS ICs Using Novel Hybrid Assembly Techniques,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, August 2007.

J. M. Perkins and C. G. Fonstad, manuscript in preparation.

Rumpler,

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

Simpkins, T.

T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
[Crossref]

Smith, J. S.

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

Talghader, J. J.

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

Teo, M. S.

M. S. Teo, “Development of Pick and Place Assembly Techniques for Monolithic Optopill Integration,” MS. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, January 2005.

Tu, J. K.

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Wang, C. Y.

G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
[Crossref]

Warde, C.

T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
[Crossref]

Electron. Lett. (2)

S. Daryanani, H. Fathollahnejad, D. L. Mathine, R. Droopad, A. Kubes, and G. N. Maracas, “Integration of a Single Vertical-cavity Surface Emitting Laser onto a CMOS Inverter Chip,” Electron. Lett. 31, 833–834 (1995).
[Crossref]

J. K. Tu, J. J. Talghader, M. A. Hadley, and J. S. Smith, “Fluidic Self-assembly of InGaAs Vertical Cavity Surface Emitting Lasers onto Silicon,” Electron. Lett. 31, 1448–1449 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–927 (1997).
[Crossref]

Information Optics, AIP Conference Proceedings (1)

T. Simpkins, C. G. Fonstad, and C. Warde, “Architecture of the Compact Optoelectronic Integrated Neural (COIN) Coprocessor,” Information Optics, AIP Conference Proceedings,  860, 113–121 (2006).
[Crossref]

International Semiconductor Device Research Symposium (1)

C. G. Fonstad, “Optical Solderb Bumps: A Modular Approach to Monolithic Optoelectonics Integration,” International Semiconductor Device Research Symposium, (2001) 584–588.

Thin Solid Films (1)

G. S. Matijasevic, C. Lee, and C. Y. Wang “Au-sn alloy phase diagram and properties related to its use as a bonding medium,” Thin Solid Films 223, 276–287 (1993).
[Crossref]

Other (10)

M. S. Teo, “Development of Pick and Place Assembly Techniques for Monolithic Optopill Integration,” MS. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, January 2005.

The BCB used in this work was Cyclotene 3022-46 Resin produced by Dow Chemical Company.

J. M. Perkins and C. G. Fonstad, manuscript in preparation.

See for example: Heterogeneous Optoelectronic Integration, E. Towe , ed. (SPIE, Bellingham, WA, 2000).

MOSIS Integrated Circuit Fabrication Service, USC Information Sciences Institute.

J. M. Perkins, “Low Threshold Vertical Cavity Surface Emitting Lasers Integrated onto Si-CMOS ICs Using Novel Hybrid Assembly Techniques,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts of Technology, Cambridge, MA, August 2007.

WaferBondTM is a product of Brewer Science Incorporated.

C. G. Fonstad, E. Atmaca, W. Giziewicz, J. Perkins, and Rumpler, “Progress in Developing and Extending RM3 Heterogeneous Integration Technologies,” Singapore-MIT Alliance Symposium, January 2003.

The VCSEL heterostructure was grown by LandMark Optoelectronics Corporation.

The mesas were etched in a solution of H2SO4, H2O2 (30%), and H2O (1:18:20 by volume). The same etchant was used to remove the GaAs substrate.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A scanning electron micrograph of a completed VCSEL pill mounted for viewing purposes with indium on a flat silicon substrate. The VCSEL diameter is 35 µm at the top and 55 µm at the bottom, and the height is 8 µm. (The material surrounding the pill is not present in recess-mounted devices.)

Fig. 2.
Fig. 2.

A photomicrograph of a 3 by 3 array of VCSEL pills bonded in recesses on a CMOS chip prior to BCB replanarization, contact via formation, and interconnect metal deposition and patterning. The VCSELs can be tested at this stage to confirm good back-side contact and bonding.

Fig. 3.
Fig. 3.

A photomicrograph of a VCSEL pill fully recess integrated within a CMOS chip. The metal pattern seen connects the top contact ring of the VCSEL to the CMOS drive circuit below it on the IC chip.

Fig. 4.
Fig. 4.

The CW L-VGS and I-VGS curves for a VCSEL RM3-integrated on a Si-CMOS chip and controlled via the gate voltage on an n-channel drive transistor.

Metrics