Abstract

A deterministic surface correction technique has been used to improve the surface figure of two fused silica optical flats over a diameter of 60 mm with no measurable degradation in their surface quality at spatial frequencies of ≤750 mm-1. The surface corrections were achieved by selective ion beam sputtering (IBS) deposition of an index-matched dielectric layer through a multi-aperture mask. Two flats were corrected, one finished on a pitch lap, the other on a Teflon lap to give two distinctly different surface roughness characteristics. The microroughnesses measured on a TOPO-WYKO profilometer were 3.0 Å and 7.2 Å respectively. Both optics were improved to better than λ/100 peak-to-valley and in each case the surface correction process preserved or potentially improved the microroughness of the optic.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://acpo.csiro.au
  2. H. B. Cheng, Z. J. Feng, and Y. W. Wang, "Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface," J. Opt. Technol. 72, 865-871 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JOT-72-11-865.
    [CrossRef]
  3. Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
    [CrossRef]
  4. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. -W. Kim, "The �??Precessions�?? tooling for polishing and figuring flat, spherical and aspheric surfaces," Opt. Express 11, 958-964 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-958.
    [CrossRef] [PubMed]
  5. J. Arkwright, I. Underhill, N. Pereira, and M. Gross, "Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask," Opt. Express 13, 2731-2741 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2731.
    [CrossRef] [PubMed]
  6. J. Arkwright, "Design of multiaperture masks for subnanometer correction of ultraprecision optical components," Appl. Opt. 46, 6375-6380 (2007).
    [CrossRef] [PubMed]
  7. A. J. Leistner, E. G. Thwaite, F. Lesha, and J. M. Bennett, "Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces," Appl. Opt. 31, 1472-1482 (1992).
    [CrossRef] [PubMed]
  8. P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
    [CrossRef]
  9. K. G. Larkin and B. F. Oreb, "New seven-sample symmetrical phase-shifting algorithm," Proc. SPIE 1755, 2-11 (1993).
    [CrossRef]
  10. P. Hariharan, "Phase-shifting interferometry: minimization of systematic errors," Opt. Eng. 39, 967-969 (2000).
    [CrossRef]
  11. K. Creath and J. C. Wyant, "Absolute measurement of surface roughness," Appl. Opt. 29, 3823-3827 (1990).
    [CrossRef] [PubMed]

2007

2005

2004

Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
[CrossRef]

2003

2000

P. Hariharan, "Phase-shifting interferometry: minimization of systematic errors," Opt. Eng. 39, 967-969 (2000).
[CrossRef]

1999

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

1993

K. G. Larkin and B. F. Oreb, "New seven-sample symmetrical phase-shifting algorithm," Proc. SPIE 1755, 2-11 (1993).
[CrossRef]

1992

1990

Arkwright, J.

Bennett, J. M.

Brooks, D.

Cheng, H. B.

Creath, K.

Fairman, P. S.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Farrant, D. I.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Feng, Z. J.

Freeman, R.

Freund, C. H.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Gilliand, Y.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Gross, M.

Hariharan, P.

P. Hariharan, "Phase-shifting interferometry: minimization of systematic errors," Opt. Eng. 39, 967-969 (2000).
[CrossRef]

Kang, G. W

Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
[CrossRef]

Kim, S. -W.

King, A.

Larkin, K. G.

K. G. Larkin and B. F. Oreb, "New seven-sample symmetrical phase-shifting algorithm," Proc. SPIE 1755, 2-11 (1993).
[CrossRef]

Leistner, A. J.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

A. J. Leistner, E. G. Thwaite, F. Lesha, and J. M. Bennett, "Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces," Appl. Opt. 31, 1472-1482 (1992).
[CrossRef] [PubMed]

Lesha, F.

McCavana, G.

Morton, R.

Oreb, B. F.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

K. G. Larkin and B. F. Oreb, "New seven-sample symmetrical phase-shifting algorithm," Proc. SPIE 1755, 2-11 (1993).
[CrossRef]

Pereira, N.

Qiu, Z. J.

Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
[CrossRef]

Seckold, J. A.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Thwaite, E. G.

Underhill, I.

Walker, D.

Walsh, C. J.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Wang, Y. W.

Ward, B. K.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

Wyant, J. C.

Zhang, F. H.

Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
[CrossRef]

Appl. Opt.

J. Opt. Technol.

Key Eng. Mat.

Q2. F. H. Zhang, G. W Kang, and Z. J. Qiu, "Surface Roughness of Optical Glass Under Magnetorheological Finishing," Key Eng. Mat. 259-260, 662-666 (2004).
[CrossRef]

Opt. Eng.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, "300-mm-aperture phase-shifting Fizeau interferometer," Opt. Eng. 38.8, 1371-1380 (1999).
[CrossRef]

P. Hariharan, "Phase-shifting interferometry: minimization of systematic errors," Opt. Eng. 39, 967-969 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

K. G. Larkin and B. F. Oreb, "New seven-sample symmetrical phase-shifting algorithm," Proc. SPIE 1755, 2-11 (1993).
[CrossRef]

Other

http://acpo.csiro.au

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measuring the substrates in various locations of the 320 mm aperture (here: λ/10 flat before corrections). Five measurement files overlaid in their actual locations; reference file in the background. Small-scale fixed-pattern structures in the reference file are eliminated from measurement results by subtraction. The perimeter of the flat has a steep “roll-off” near its edge due to the mechanical nature of the polishing process.

Fig. 2.
Fig. 2.

Example difference maps between the three most consistent phase maps from the multiple measurement of the Teflon-finished λ/20 flat optical flat in the LADI aperture. Measurements were taken in the centre, left, and right of the LADI aperture.

Fig. 3.
Fig. 3.

Substrate roughness maps before correction. Left: pitch-finished flat; right: Teflon-finished flat. The Scales are the same for both images.

Fig. 4.
Fig. 4.

Evolution of the surface figure of the optical flats during the correction process. Images (a), (b), and (c) show the pitch lap finished optic after the 1st 2nd and 3rd depositions; images (d), (e), and (f) show similar stages for the Teflon lap finished optic.

Fig. 5.
Fig. 5.

Substrate roughness maps after first deposition run (top) and final correction run (bottom). Left: pitch-finished flat; right: Teflon-finished flat. The scales are the same in all images.

Tables (2)

Tables Icon

Table 1. Evolution of the surface figure and surface roughness of the pitch finished optic throughout the correction process.

Tables Icon

Table 2. Evolution of the surface figure and surface roughness of the Teflon finished optic throughout the correction process.

Metrics