Abstract

Waveguiding in periodical structures of the size of the wavelength is applied to increase the functional spectral band of diffractive optics. The deviation of the effective refractive index between waveguides as a function of the wavelength is utilized to compensate the strong wavelength dependence of the efficiency of diffraction gratings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braam, J. Okkonen, M. Aikio, K. Makisara, J. Bolton, "Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA," Proc. SPIE 1937, 142-151 (1993).
    [CrossRef]
  2. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
    [CrossRef]
  3. J. Pietarinen, T. Vallius, and J. Turunen, "Wideband four-level transmission gratings with flattened spectral efficiency," Opt. Express 14, 2583-2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14 7-2583
    [PubMed]
  4. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
    [CrossRef]
  5. J. Turunen, M. Kuittinen, and F. Wyrowski, "Diffractive optics: electromagnetic approach," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2000) Vol. XL., Chap. V
  6. H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  7. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997).
  8. M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).
  9. C. Sauvan, P. Lalanne, and M.-S. L. Lee, "Broadband blazing with artificial dielectrics," Opt. Lett. 29, 1593-1595 (2004).
    [CrossRef] [PubMed]
  10. T. Tamir, Integrated Optics, 2nd ed., (Springer-Verlag; 1979).
  11. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870- 1876 (1996).
    [CrossRef]
  12. E. Noponen, A. Vasara, and J. Turunen, "Parametric optimization of multilevel diffractive optical elements by electromagnetic theory," Appl. Opt. 31, 5910-5912 (1992).
    [CrossRef] [PubMed]
  13. K. Blomstedt, E. Noponen, and J. Turunen, "Surface-profile optimization of diffractive imaging lenses," J. Opt. Soc. Am. A 18, 521-525 (2001).
    [CrossRef]

2004

2001

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
[CrossRef]

K. Blomstedt, E. Noponen, and J. Turunen, "Surface-profile optimization of diffractive imaging lenses," J. Opt. Soc. Am. A 18, 521-525 (2001).
[CrossRef]

1996

1992

Blomstedt, K.

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
[CrossRef]

Lalanne, P.

Lee, M.-S. L.

Li, L.

Noponen, E.

Sauvan, C.

Turunen, J.

Vasara, A.

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
[CrossRef]

Wolffenbuttel, R. F.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Lett.

Sens. Actuators A

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on diffraction gratings," Sens. Actuators A 92, 88-95 (2001).
[CrossRef]

Other

J. Pietarinen, T. Vallius, and J. Turunen, "Wideband four-level transmission gratings with flattened spectral efficiency," Opt. Express 14, 2583-2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14 7-2583
[PubMed]

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
[CrossRef]

J. Turunen, M. Kuittinen, and F. Wyrowski, "Diffractive optics: electromagnetic approach," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2000) Vol. XL., Chap. V

H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997).

M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).

T. Tamir, Integrated Optics, 2nd ed., (Springer-Verlag; 1979).

B. Braam, J. Okkonen, M. Aikio, K. Makisara, J. Bolton, "Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA," Proc. SPIE 1937, 142-151 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The double groove type of transmission-grating profile. (b) The electric energy density in and near the grating region.

Fig. 2.
Fig. 2.

(a) The lowest-order effective refractive indices of two pillars, (b) their difference n eff2-n eff1 on λ and 1/λ, and (c) the wavelength dependence of the phase difference caused by the pillars.

Fig. 3.
Fig. 3.

Spectral efficiency curves of diffraction order -1 for (a) IR-grating and (b) Visible band grating. Dashed lines indicate the efficiency in TE polarization and the solid line in TM polarization for which the grating is designed.

Fig. 4.
Fig. 4.

Comparison of the theoretical spectral efficiency (curves) and experimental results (marks). Dotted line TM, dashed line TE and solid line for the unpolarized light.+indicates the measurement results of TM polarization, ×TE and ∘ the unpolarized light.

Fig. 5.
Fig. 5.

SEM image of the cross-section of the fabricated fused silica grating.

Tables (1)

Tables Icon

Table 1. Quantitative characterization of the designed and fabricated grating profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = ( h 2 n eff 2 h 1 n eff 1 h 1 n 1 ) 2 π λ .

Metrics