Abstract

A photonic instantaneous frequency measurement system capable of measuring both RF frequency and power simultaneously, is conceived and practically demonstrated. This system employs an RF photonic Hilbert transformer together with low-cost, low-frequency photo-detectors to obtain two orthogonal DC measurements. This system exhibits a frequency range of 1–10 GHz. Wider frequency range can be achieved through integration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gruchala and M. Czyzewski, "The instantaneous frequency measurement receiver in the complex electromagnetic environment," in Proceedings of International Conference on Microwave, RADAR, and Wireless Communications (MIKON2004) 1, 155-158 (2004).
  2. J. B.Y. Tsui and D. L. Sharpin, "Frequency measurement receiver with bandwidth improvement through synchronized phase shifted sampling," United States Patent 5198746, 30 Mar. 1993.
  3. L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
    [CrossRef]
  4. S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).
  5. L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
    [CrossRef]
  6. A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
    [CrossRef]
  7. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
    [CrossRef]
  8. J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  9. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett. 33, 98-100 (2008).
    [CrossRef] [PubMed]
  10. N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

2008 (1)

2006 (4)

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

1997 (1)

S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).

1995 (1)

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

Bui, L. A.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett. 33, 98-100 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

Capmany, J.

Chang, K.

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

Emami, H.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett. 33, 98-100 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

Fan, L.

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

Ho, C-H.

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Klymyshyn, D.

S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).

Kumar, S.

S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).

Lanamaluru, S.

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

Minasian, R. A.

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

Mitchell, A.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett. 33, 98-100 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

Mohammadi, A.

S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Ortega, B.

Pastor, D.

Sarkhosh, N.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett. 33, 98-100 (2008).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

Seeds, A. J.

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

Williams, K. J.

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

J. Lightwave Technol. (1)

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, "Reduced cost microwave photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett. (In Press).

L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

L. Fan, C-H. Ho, S. Lanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde�??s CPW-slot couplers," IEEE Trans. Microwave Theory Tech. 43, 2749-2758 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Microwave J. (1)

S. Kumar, A. Mohammadi, and D. Klymyshyn, "A direct 64QAM modulator suitable for MMIC applications," Microwave J. 40, 116-122 (1997).

Opt. Lett. (1)

Other (2)

H. Gruchala and M. Czyzewski, "The instantaneous frequency measurement receiver in the complex electromagnetic environment," in Proceedings of International Conference on Microwave, RADAR, and Wireless Communications (MIKON2004) 1, 155-158 (2004).

J. B.Y. Tsui and D. L. Sharpin, "Frequency measurement receiver with bandwidth improvement through synchronized phase shifted sampling," United States Patent 5198746, 30 Mar. 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Block diagram of an IFM system.

Fig. 2.
Fig. 2.

Experimental set-up of IFM system with orthogonal outputs.

Fig. 3.
Fig. 3.

(a) Magnitude response, and (b) RF Path phase response relative to the Optical Path.

Fig. 4.
Fig. 4.

Measured and predicted results for (a) reference tap and (b) two-tap transversal filter.

Fig. 5.
Fig. 5.

(a) Measured frequency vs. input frequency. (b) measured and predicted power.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V DC 1 = 1 8 V o 2 cos Ω τ , V DC 2 = 1 8 V o 2 sin Ω τ
V DC o ( Ω ) = 1 4 G Z PD P o [ 1 + π 2 ( 1 + M ( Ω ) 2 ) Z in P RF 4 V π 2 ] + π 2 4 V π 2 G M ( Ω ) Z PD Z in P o P RF cos ϕ ( Ω )
α o = 1 4 G Z PD P o , β o = 1 16 G Z PD Z in P o π 2 ( 1 + M 2 ) V π 2 , γ o = π 4 2 V π 2 G M Z PD Z in P o
V DC o ( Ω ) = α o + β o P RF + γ o P RF cos ϕ
V DC o , 1 ( Ω ) = α 90 + β o P RF γ 90 P RF cos ( ϕ + Ω τ ' 2 )
V DC o , 2 ( Ω ) = α 90 + β o P RF + γ 90 P RF cos ( ϕ Ω τ ' 2 )
V DC 90 ( Ω ) = 2 α 90 + 2 β 90 P RF + 2 γ 90 P RF sin Ω τ ' 2 sin ϕ
V DC o ( Ω ) α o V DC 90 ( Ω ) 2 α 90 = β o + γ o cos ϕ ( Ω ) 2 β 90 + 2 γ 90 sin Ω τ ' 2 sin ϕ ( Ω )

Metrics