Abstract

We present that an interference lithography technique beyond the diffraction limit can be theoretically achieved by positing an anisotropic metamaterial under the conventional lithographic mask. Based on the special dispersion characteristics of the metamaterial, only the enhanced evanescent waves with high spatial frequencies can transmit through the metamaterial and contribute to the lithography process. Rigorous coupled wave analysis shows that with 442nm exposure light, one-dimensional periodical structures with 40nm features can be patterned. This technique provides an alternative method to fabricate large-area nanostructures.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Subwavelength photolithography based on surface-plasmon polariton resonance

Xiangang Luo and Teruya Ishihara
Opt. Express 12(14) 3055-3065 (2004)

Plasmonic interference nanolithography with a double-layer planar silver lens structure

Beibei Zeng, Xufeng Yang, Changtao Wang, and Xiangang Luo
Opt. Express 17(19) 16783-16791 (2009)

Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer

Xuefeng Yang, Beibei Zeng, Changtao Wang, and Xiangang Luo
Opt. Express 17(24) 21560-21565 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
    [Crossref]
  2. M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
    [Crossref]
  3. R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
    [Crossref]
  4. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
    [Crossref]
  5. M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
    [Crossref]
  6. GoodberletJ. G.KavakH. “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl.Phys.Lett. 81, 1315–1317 (2002).
    [Crossref]
  7. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
    [Crossref]
  8. X. Luo and T. Ishihara “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [Crossref]
  9. X. Luo and T, Ishihara “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
    [Crossref] [PubMed]
  10. J. B. Pendry “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000)
    [Crossref] [PubMed]
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
    [Crossref] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  13. M. J. WeberHandbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp.352–355.
  14. S. TretyakovAnalytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).
  15. N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
    [Crossref] [PubMed]
  16. L. F. Li “New formulation of the Fourier modal method for crossed surface-relief gratings,” J.opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]

2005 (2)

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

2004 (2)

X. Luo and T, Ishihara “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
[Crossref] [PubMed]

X. Luo and T. Ishihara “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

2003 (1)

M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
[Crossref]

2002 (1)

GoodberletJ. G.KavakH. “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl.Phys.Lett. 81, 1315–1317 (2002).
[Crossref]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

2000 (2)

J. B. Pendry “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

1999 (1)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

1997 (1)

L. F. Li “New formulation of the Fourier modal method for crossed surface-relief gratings,” J.opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

1982 (1)

M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Cooper, E. B.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Dai, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Dhaliwal, R. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Enichen, W. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Fang, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Fang, N

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Friedman, R. S.

M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
[Crossref]

Golldaday, S. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Gordon, M. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Hunt, C. F.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Ishihara, T,

Ishihara, T.

X. Luo and T. Ishihara “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

Kendall, R. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Lee, H.

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Levenson, M. D

M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
[Crossref]

Li, L. F.

L. F. Li “New formulation of the Fourier modal method for crossed surface-relief gratings,” J.opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

Lieber, C. M.

M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
[Crossref]

Lieberman, J. E.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Luo, X.

X. Luo and T, Ishihara “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
[Crossref] [PubMed]

X. Luo and T. Ishihara “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

Manalis, S. R.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Matsumoto, K.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Mcalpine, M. C.

M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
[Crossref]

Minne, S.C.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Mukai, A.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Naya, M.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

Pfeiffer, H. C.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Pinckney, D. J.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Quate,

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Robinson, C. F.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Rockrohr, J. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Sakaguchi, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Simpson, R. A.

M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
[Crossref]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Stickel, W.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Sun, C

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Tani, T.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Tressler, E. V.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

Tretyakov, S.

S. TretyakovAnalytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).

Tsuruma, I.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Viswanathan, N. S.

M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
[Crossref]

Weber, M. J.

M. J. WeberHandbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp.352–355.

Yasunami, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Zhang, X.

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, C. F. Hunt, and Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566–3568 (1999).
[Crossref]

X. Luo and T. Ishihara “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[Crossref]

Appl.Phys. Lett. (1)

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl.Phys. Lett. 86, 201113 (2005)
[Crossref]

Appl.Phys.Lett. (1)

GoodberletJ. G.KavakH. “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl.Phys.Lett. 81, 1315–1317 (2002).
[Crossref]

IBM J.Res. DeV (1)

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, “PREVAIL- Electron. projection technology approach for next generation lithography,” IBM J.Res. DeV 45, 615–638 (2001).
[Crossref]

IEEE Trans. on Electron Devices. (1)

M. D Levenson, N. S. Viswanathan, and R. A. Simpson “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. on Electron Devices. 29, 1828–1836 (1982)
[Crossref]

J.opt. Soc. Am. (1)

L. F. Li “New formulation of the Fourier modal method for crossed surface-relief gratings,” J.opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

Nano Lett. (1)

M. C. Mcalpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint Lithography for Hybrid Plastic Electronics,” Nano Lett. 3, 443–445 (2003).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (2)

J. B. Pendry “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000)
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

N Fang, H. Lee, C Sun, and X. Zhang “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Other (2)

M. J. WeberHandbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp.352–355.

S. TretyakovAnalytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawing of the proposed structure. All the components are treated as semi-infinite in the y direction.

Fig. 2.
Fig. 2.

Dispersion relation of the SAMS with εx>0 and εz<0. Here the proportion of thicknesses for silver and fused silica slices is set to be 2:3. (b) The optical transfer function for the designed SAMS. The structure is composed of 30 pairs of 20nm-thick silver and 30nm-thick fused silica slices. The operating wavelength is 442nm.

Fig. 3.
Fig. 3.

Calculated distributions and cross-sections of total electrical field (E2 x +E2 z ) for the two proposed configurations. Both of the two structures contain the same SAMS (30 pairs of 20nm-thick silver and 30nm-thick fused silica slices) under the mask. The p-polarized plane waves (at a wavelength 442nm) are vertically incident to the chromium masks. (a) (b) for the chromium mask with 160nm periodicity, (c) (d) for the chromium mask with 320nm periodicity.

Fig. 4.
Fig. 4.

Feature size versus the mask periodicity and intensity contrast.

Fig. 5.
Fig. 5.

The relation between the field intensity under the SAMS and the duty cycle of the mask. The insets depict the interference intensities under the SAMS for case of a mask with same periodicity (160nm) but different duty cycles (0.3 and 0.65).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 0 [ ε x 0 0 0 ε x 0 0 0 ε z ] ,
k x ' = k 0 · sin θ + 2 m π / d ,
V = E z 2 E x 2 E z 2 + E x 2 = ε pr k 0 2 2 k x 2 ε pr k 0 2

Metrics