Abstract

We present that an interference lithography technique beyond the diffraction limit can be theoretically achieved by positing an anisotropic metamaterial under the conventional lithographic mask. Based on the special dispersion characteristics of the metamaterial, only the enhanced evanescent waves with high spatial frequencies can transmit through the metamaterial and contribute to the lithography process. Rigorous coupled wave analysis shows that with 442nm exposure light, one-dimensional periodical structures with 40nm features can be patterned. This technique provides an alternative method to fabricate large-area nanostructures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
    [CrossRef]
  2. M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
    [CrossRef]
  3. R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
    [CrossRef]
  4. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
    [CrossRef]
  5. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with a phase-shifting mask," IEEE Trans. on Electron Devices.  29, 1828-1836 (1982)
    [CrossRef]
  6. J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
    [CrossRef]
  7. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
    [CrossRef]
  8. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  9. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
    [CrossRef] [PubMed]
  10. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000)
    [CrossRef] [PubMed]
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
    [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  13. M. J. Weber,  Handbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp. 352-355.
  14. S. Tretyakov,  Analytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).
  15. N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  16. L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]

2005 (2)

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004 (2)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

2003 (1)

M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

2002 (1)

J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

2001 (2)

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000)
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

1999 (1)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

1997 (1)

L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Cooper, E. B.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Dai, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Dhaliwal, R. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Enichen, W. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Fang,

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Fang, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Friedman, R. S.

M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Golldaday, S. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Goodberlet,

J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

Gordon, M. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Hunt, T.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Ishihara, X.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

Kavak, J. G.

J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

Kendall, R. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Lee, N.

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Li,

L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

Lieber, C. M.

M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Lieberman, J. E.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Luo,

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Manalis, S. R.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Matsumoto, K.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Mcalpine, M. C.

M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Minne, S. C.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Mukai, T.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Naya,

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Nemat-Nasser, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Padilla, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Pendry,

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000)
[CrossRef] [PubMed]

Pfeiffer, H. C.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Pinckney, D. J.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Quate, C. F.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Robinson, C. F.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Rockrohr, J. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Sakaguchi, A.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Schultz, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schultz, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Shelby,

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith,

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Smith, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Stickel, W.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Sun, H.

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tani, I.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Tressler, E. V.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

Tsuruma, M.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Vier, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Yasunami, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Zhang, C.

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999).
[CrossRef]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

Appl.Phys. Lett. (1)

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005).
[CrossRef]

Dev (1)

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001).
[CrossRef]

J.opt. Soc. Am. A (1)

L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

Nano Lett. (1)

M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000)
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000)
[CrossRef] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Other (3)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with a phase-shifting mask," IEEE Trans. on Electron Devices.  29, 1828-1836 (1982)
[CrossRef]

M. J. Weber,  Handbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp. 352-355.

S. Tretyakov,  Analytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawing of the proposed structure. All the components are treated as semi-infinite in the y direction.

Fig. 2.
Fig. 2.

Dispersion relation of the SAMS with εx>0 and εz<0. Here the proportion of thicknesses for silver and fused silica slices is set to be 2:3. (b) The optical transfer function for the designed SAMS. The structure is composed of 30 pairs of 20nm-thick silver and 30nm-thick fused silica slices. The operating wavelength is 442nm.

Fig. 3.
Fig. 3.

Calculated distributions and cross-sections of total electrical field (E2 x +E2 z ) for the two proposed configurations. Both of the two structures contain the same SAMS (30 pairs of 20nm-thick silver and 30nm-thick fused silica slices) under the mask. The p-polarized plane waves (at a wavelength 442nm) are vertically incident to the chromium masks. (a) (b) for the chromium mask with 160nm periodicity, (c) (d) for the chromium mask with 320nm periodicity.

Fig. 4.
Fig. 4.

Feature size versus the mask periodicity and intensity contrast.

Fig. 5.
Fig. 5.

The relation between the field intensity under the SAMS and the duty cycle of the mask. The insets depict the interference intensities under the SAMS for case of a mask with same periodicity (160nm) but different duty cycles (0.3 and 0.65).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 0 [ ε x 0 0 0 ε x 0 0 0 ε z ] ,
k x ' = k 0 · sin θ + 2 m π / d ,
V = E z 2 E x 2 E z 2 + E x 2 = ε pr k 0 2 2 k x 2 ε pr k 0 2

Metrics