Abstract

We have designed a bend insensitive single mode optical fiber with a low-index trench using spot-size definitions and their optimization technique. The bending loss at a 5 mm of bending radius was negligible, while single mode properties were intact.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Watekar, S. Ju and W. -T. Han, "Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application," Opt. Express 16, 1180-1185 (2008).
    [CrossRef] [PubMed]
  2. S. Matsuo, M. Ikeda and K. Himeno, "Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH," Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb. 23-27, 2004, ThI3 (2004).
  3. M. -J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis and J. J. Englebert, "Ultra-low bending loss single-mode fiber for FTTH," Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb. 24-28, 2008, PDP10 (2008).
  4. Stokeryale bend insensitive fiber (2007), http://www.stockeryale.com/o/fiber/products/bif-1550-l2.htm
  5. ITU-T recommendation G.652.
  6. J. Van Erps, C. Debaes, T. Nasilowski, J. Watt, J. Wojcik, and H. Thienpont, "Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology," Opt. Express 16, 5061-5074 (2008).
    [CrossRef] [PubMed]
  7. R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
    [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983).
  9. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  10. K. Petermann and R. Kuhne, "Upper and lower limits for the microbending loss in arbitrary single-mode fibers," J. Lightwave Technology 4, 2-7 (1986).
    [CrossRef]

2008 (2)

1992 (1)

R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
[CrossRef]

1986 (1)

K. Petermann and R. Kuhne, "Upper and lower limits for the microbending loss in arbitrary single-mode fibers," J. Lightwave Technology 4, 2-7 (1986).
[CrossRef]

1976 (1)

Das, U. K.

R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
[CrossRef]

Debaes, C.

Han, W. -T.

Ju, S.

Kuhne, R.

K. Petermann and R. Kuhne, "Upper and lower limits for the microbending loss in arbitrary single-mode fibers," J. Lightwave Technology 4, 2-7 (1986).
[CrossRef]

Marcuse, D.

Nasilowski, T.

Pal, B. P.

R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
[CrossRef]

Petermann, K.

K. Petermann and R. Kuhne, "Upper and lower limits for the microbending loss in arbitrary single-mode fibers," J. Lightwave Technology 4, 2-7 (1986).
[CrossRef]

Tewari, R.

R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
[CrossRef]

Thienpont, H.

Van Erps, J.

Watekar, P. R.

Watt, J.

Wojcik, J.

IEEE J. Lightwave Technology (1)

R. Tewari, B. P. Pal and U. K. Das, "Dispersion shifted dual-shape core fibers: Optimization based on spot size definitions," IEEE J. Lightwave Technology 10, 1-5 (1992).
[CrossRef]

J. Lightwave Technology (1)

K. Petermann and R. Kuhne, "Upper and lower limits for the microbending loss in arbitrary single-mode fibers," J. Lightwave Technology 4, 2-7 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Other (5)

S. Matsuo, M. Ikeda and K. Himeno, "Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH," Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb. 23-27, 2004, ThI3 (2004).

M. -J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis and J. J. Englebert, "Ultra-low bending loss single-mode fiber for FTTH," Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb. 24-28, 2008, PDP10 (2008).

Stokeryale bend insensitive fiber (2007), http://www.stockeryale.com/o/fiber/products/bif-1550-l2.htm

ITU-T recommendation G.652.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Refractive index profile of the trenched SMF.

Fig. 2.
Fig. 2.

Effect of variations of design parameters of the trenched SMF on bending loss.

Fig. 3.
Fig. 3.

(a). to 3. (e). Optimized design parameters of the BI-SMF. (Wavelength =1550 nm, bending radius =5 mm). ×50 and ×500 in the figures indicate that original bending loss values have been multiplied by 50 and 500 times, respectively.

Fig. 4.
Fig. 4.

Spectral variations of the dispersion, the MFDeff and the bending loss of the single trenched BI-SMF (b=1.1a, c=4a and ΔnTrench=-0.003). ‘×10’ in the figure indicates that original dispersion slope values have been multiplied by 10 times.

Fig. 5.
Fig. 5.

Spectral variations of the MFDeff, the dispersion and the bending loss of the double trenched BI-SMF (b=1.1a, c=4a and ΔnTrench =-0.003. Additional trench: separation=1.1a, width=4a and refractive index difference=-0.003). ‘×10’ in the figure indicates that original dispersion slope values have been multiplied by 10 times.

Tables (2)

Tables Icon

Table 1. Typical optical parameters of the SMF under consideration in the current communication.

Tables Icon

Table 2. Optical parameters of the typical BI-SMF.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

MFD eff = 2 2 π ( r E 2 r dr ) 2 ( π r E 4 r dr )
d 2 E dr 2 = 1 r dE dr + ( k 0 2 n 2 ( r ) β 2 ) E + L 2 r 2 E
MFD = 2 λ π n max k 0 ( n eff n min )
α macro = 10 log e 10 π V 8 16 R c R b W 3 exp ( 4 R b Δ W 3 3 R c V 2 ) [ 0 ( 1 g ) F 0 r dr ] 2 0 F 0 2 r dr
g = n ( r ) 2 n min 2 n max 2 n min 2 ; V = k 0 r c n max 2 n min 2 ;
W = r c β 2 ( k 0 n min ) 2 ; Δ = n max 2 n min 2 2 n max 2

Metrics