Abstract

Plasmonics, a rapidly emerging subdiscipline of nanophotonics, is aimed at exploiting surface plasmons for important applications, including sensing, waveguiding, and imaging. Parallel to these research efforts, technology yielding enhanced scattering and absorption of localized surface plasmons (LSPs) provides promising routes for trapping and manipulation of micro and nano scale particles, as well as biomolecules with low laser intensity due to high energy conversion efficiency under resonant excitation. In this paper, we show that the LSP-induced scattering field from a self-assembled gold nanoparticle array can be used to sustain trapping of single micron-sized particles with low laser intensity. Moreover, we demonstrate for the first time efficient localized concentration of submicron sized particles and DNAs of various sizes through photothermal effect of plasmonics.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
    [CrossRef]
  2. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
    [CrossRef]
  3. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
    [CrossRef] [PubMed]
  4. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
    [CrossRef] [PubMed]
  5. S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
    [CrossRef] [PubMed]
  6. D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
    [CrossRef] [PubMed]
  7. G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
    [CrossRef]
  8. X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
    [CrossRef]
  9. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  10. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA,  94, 4853-4860 (1997).
    [CrossRef] [PubMed]
  11. L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
    [CrossRef]
  12. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
    [CrossRef]
  13. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
    [CrossRef]
  14. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
    [CrossRef]
  15. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
    [CrossRef]
  16. X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.
  17. D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002).
    [CrossRef]
  18. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).
  19. X. Miao and L. Y. Lin, "Large dielectrophoresis force and torque induced by localized surface plasmon resonance of a cap-shaped Au nanoparticle array," Opt. Lett. 32, 295-297 (2007).
    [CrossRef] [PubMed]
  20. E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
    [CrossRef]
  21. X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007).
    [CrossRef]
  22. H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002).
    [CrossRef]

2008 (3)

X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

2007 (3)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

X. Miao and L. Y. Lin, "Large dielectrophoresis force and torque induced by localized surface plasmon resonance of a cap-shaped Au nanoparticle array," Opt. Lett. 32, 295-297 (2007).
[CrossRef] [PubMed]

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007).
[CrossRef]

2006 (3)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
[CrossRef]

2005 (3)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

2002 (4)

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
[CrossRef]

H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002).
[CrossRef]

2000 (1)

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

1997 (2)

A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA,  94, 4853-4860 (1997).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
[CrossRef]

1986 (1)

E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
[CrossRef]

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
[CrossRef]

Ashkin, A.

A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA,  94, 4853-4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
[CrossRef]

Boyd, D. A.

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

Braun, D.

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002).
[CrossRef]

Brongersma, L.

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

Cao, G.

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
[CrossRef]

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

Drezek, R.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Feder, J.

E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Goodwin, D. G.

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Greengard, L.

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

Halas, N. J.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Halas, N. S.

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

Hinrichsen, E. L.

E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Jøssang, T.

E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
[CrossRef]

Käll, M.

H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Lee, L.

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

Libchaber, A.

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002).
[CrossRef]

Lin, L. Y.

X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
[CrossRef]

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007).
[CrossRef]

X. Miao and L. Y. Lin, "Large dielectrophoresis force and torque induced by localized surface plasmon resonance of a cap-shaped Au nanoparticle array," Opt. Lett. 32, 295-297 (2007).
[CrossRef] [PubMed]

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Lowery, A.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

Miao, X.

X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
[CrossRef]

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007).
[CrossRef]

X. Miao and L. Y. Lin, "Large dielectrophoresis force and torque induced by localized surface plasmon resonance of a cap-shaped Au nanoparticle array," Opt. Lett. 32, 295-297 (2007).
[CrossRef] [PubMed]

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
[CrossRef]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
[CrossRef]

L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

Pun, S. H.

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Quidant, R.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
[CrossRef]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Righini, M.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

Sershen, S. R.

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

West, J. L.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

Westcott, S. L.

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

Wilson, B. K.

X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
[CrossRef]

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Xie, S.

L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
[CrossRef]

Xu, H.

H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

App. Phys. Lett. (1)

X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007).
[CrossRef]

J. Biomed. Mater. Res. (1)

S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000).
[CrossRef] [PubMed]

J. Stat. Phys. (1)

E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986).
[CrossRef]

Nano Lett. (1)

X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.

Nano. Lett. (4)

D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Nat. Mat. (1)

G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005).
[CrossRef]

Nat. Photo. (1)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008).
[CrossRef]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).

Phys. Rev. Lett. (7)

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002).
[CrossRef]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008).
[CrossRef]

L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002).
[CrossRef]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006).
[CrossRef]

H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA,  94, 4853-4860 (1997).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MPG (822 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) SEM micrograph of the self-assembled gold nanoparticles. The diameter of individual gold nanoparticles is about 450 nm. (b) NSOM image of the plasmonic substrate where the nanoparticle distribution is sparse, showing the near-field radiation. The wavelength of the excitation laser is 633 nm. (c) High magnification view of the area marked with the red square in (b). (d) Scattering efficiency spectrum of the plasmonic substrate, showing the peak at 624 nm. (e) Absorption efficiency spectrum of the plasmonic substrate, showing the peak at 668 nm.

Fig. 2.
Fig. 2.

(a) Experimental setup for the trapping and concentration experiments on the plasmonic substrate. (b) Detailed configuration of the sample chamber.

Fig. 3.
Fig. 3.

The minimum laser intensity to maintain the trap as a function of flow rate of surrounding fluid utilizing plasmonic trapping. All the optical intensities are measured at the sample plane under the microscope objective. (a)–(f) show the measurement results for single polystyrene beads with diameter 7.3, 6.3 (non-spherical), 5.0, 3.9, 2.5 and 1.1 µm, respectively. The insets show the corresponding microscopic images of particles. The scale bars in all images represent 5 µm in length.

Fig. 4.
Fig. 4.

The slope of the fitted line through origin in Fig. 3 versus particle size for plasmonic trapping. The error bars show the standard deviations of the linear fits.

Fig. 5.
Fig. 5.

(Media 1) Optical images of (a) fluorescent polystyrene beads with 590-nm diameter randomly distribute in the liquid. (b) The laser spot on the gold nanoparticle array. The diameter of the laser spot is estimated to be about 5 µm. (c) A strong localized concentration of sub-micron sized polystyrene beads at the same location of the laser spot. The snapshot shown in (c) is taken with the same domain as that in (b). (d) The sub-micron sized polystyrene beads are concentrated at the four corners of the domain in (a). (e) Average fluorescence intensity and temperature increase of the concentration site as a function of laser intensity. The illumination time is kept the same for all the measurements in (e). (f) Average fluorescence intensity and temperature increase of the concentration site as a function of illumination time. The laser illumination intensity is kept the same for all the measurements in (f). The fluorescence intensities of concentrated particles shown on left y-axis in (e) and (f) have been normalized to the maximum in (e) and (f), respectively.

Fig. 6.
Fig. 6.

Calibration curve of fluorescence intensity of Rhodamine B used for temperature measurement, where red dots are data points measured in the experiment and blue curve is the fitted line.

Fig. 7.
Fig. 7.

Fluorescence images of λ DNA stained by POPO-1 (a) before and (b) after the laser illumination. (c) Fluorescence intensity profile along the vertical bisectors in (a) and (b), showing the concentration of λ DNA by surface plasmon-induced thermal convective flow. Fluorescence images of quantum dot-labeled oligonucleotides (d) before and (e) after the laser illumination. (f) Fluorescence intensity profile along the vertical bisectors in (d) and (e), showing the trapping of oligonucleotides by surface plasmon-induced thermal convective flow.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F trap = K a 3 P r 3
F drag = 6 π η a V

Metrics