Abstract

An optofluidic 1×4 switch is designed, fabricated, and tested. The switch is based on a blazed diffraction grating imprinted onto silicone elastomer at the bottom of a microfluidic channel that is filled with liquids with different refractive indices. When the condition of a diffraction maximum is met, the laser beam incident on the grating is deflected by an angle proportional to the refractive index mismatch between the elastomer and the liquid in the channel. The switch was tested using four different aqueous salt solutions generating 0th to 3rd orders of diffraction. The insertion loss was <2.5dB, the extinction ratio was >9.8dB, and the response time was 55 ms. The same basic design can be used to build optofluidic switches with more than 4 outputs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
    [CrossRef] [PubMed]
  2. G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000).
    [CrossRef]
  3. D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
    [CrossRef] [PubMed]
  4. T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005).
    [CrossRef]
  5. M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005).
    [CrossRef] [PubMed]
  6. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
    [CrossRef] [PubMed]
  7. D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  8. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  9. U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008).
    [CrossRef]
  10. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  11. D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
    [CrossRef]
  12. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006).
    [CrossRef] [PubMed]
  13. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  14. M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006).
    [CrossRef]
  15. Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
    [CrossRef] [PubMed]
  16. M. Loncar, B. G. Lee, L. Diehl, M. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007).
    [CrossRef] [PubMed]
  17. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
    [CrossRef] [PubMed]
  18. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
    [CrossRef]
  19. R. A. Soref, "Liquid-Crystal Fiberoptic Switch," Opt. Lett. 4, 155-157 (1979).
    [CrossRef] [PubMed]
  20. M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
    [CrossRef]
  21. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
    [CrossRef]
  22. S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
    [CrossRef]
  23. D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
    [CrossRef]
  24. E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592 (2004).
    [CrossRef] [PubMed]
  25. M. Shirasaki, H. Takamatsu, and T. Obokata, "Bistable Magneto-Optic Switch For Multimode Optical Fiber," Appl. Opt. 21, 1943-1949 (1982).
    [CrossRef] [PubMed]
  26. V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
    [CrossRef]
  27. M. G. Moharam, and T. K. Gaylord, "Diffraction Analysis Of Dielectric Surface-Relief Gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  28. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
    [CrossRef]

2008

U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008).
[CrossRef]

2007

2006

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006).
[CrossRef] [PubMed]

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006).
[CrossRef]

2005

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005).
[CrossRef]

M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005).
[CrossRef] [PubMed]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

2004

E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592 (2004).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

2003

2002

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

2000

G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000).
[CrossRef]

1996

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

1987

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

1984

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

1982

1979

1975

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
[CrossRef]

Aellen, T.

Anderson, W. F.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Bao, Z. Y.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Baran, J. E.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Beck, M.

Beebe, D. J.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

Behroozi, P.

Belkin, M.

Belkin, M. A.

Bertoni, H. L.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
[CrossRef]

Borenstein, J.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Camargo, E. A.

Campbell, K.

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Capasso, F.

Chakravarthy, R. S.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Chong, H. M. H.

Chronis, N.

Conroy, R. S.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

dAlessandro, A.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

De la Rue, R. M.

Diehl, L.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Eisenstein, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

Emery, T.

Erickson, D.

Fainman, Y.

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Faist, J.

Fritz, D. J.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Gaylord, T. K.

Gersborg-Hansen, M.

M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006).
[CrossRef]

Gini, E.

Giovannini, M.

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Groisman, A.

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Hang, G.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Hofstetter, D.

Huang, S. H.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Hwang, S. M.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Irimia, D.

M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005).
[CrossRef] [PubMed]

Jackel, J. L.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Jeong, K. H.

Kawachi, M.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
[CrossRef]

Khademhosseini, A.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

Kobayashi, M.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
[CrossRef]

Korotky, S. K.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006).
[CrossRef]

Langer, R.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

Lee, B. G.

Lee, L. P.

Levy, U.

U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008).
[CrossRef]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Li, K. D.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Li, Z. Y.

Liu, G. L.

Loncar, M.

Manz, A.

G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000).
[CrossRef]

Mayers, B. T.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

Mensing, G. A.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Moharam, M. G.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Mookherjea, S.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Noda, J.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
[CrossRef]

Obokata, T.

Ortiz, M.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Pandolfi, A.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Pang, L.

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Peng, S. T.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
[CrossRef]

Prentiss, M. G.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005).
[CrossRef]

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Raybon, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

Rockwood, T.

Sanders, G. H. W.

G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000).
[CrossRef]

Scherer, A.

Shamai, R.

U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008).
[CrossRef]

Shirasaki, M.

Smith, D. A.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Soref, R. A.

Squires, T. M.

T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005).
[CrossRef]

Studer, V.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

Takamatsu, H.

Tamir, T.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
[CrossRef]

Terui, H.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
[CrossRef]

Toner, M.

M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005).
[CrossRef] [PubMed]

Tucker, R. S.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

Vacanti, J. P.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

Veselka, J. J.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

Vezenov, D. V.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

Walker, G. M.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

Whitesides, G. M.

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Willner, A. E.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Wolfe, D. B.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Zhang, Z. Y.

Zou, X. Y.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

Annu. Rev. Biomed. Eng.

D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005).
[CrossRef]

M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006).
[CrossRef]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984).
[CrossRef]

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987).
[CrossRef]

IEEE J. Quantum Electron.

M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975).
[CrossRef]

J. Appl. Phys.

V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004).
[CrossRef]

J. Lightwave Technol.

D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996).
[CrossRef]

J. Opt. Soc. Am.

Nanofluid.

U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proceedings of the National Academy of Sciences of the United States of America

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys.

T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005).
[CrossRef]

TrAC-Trends Anal. Chem.

G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The optofluidic switch. (a) The functional area of the device (diffraction channel), consisting of a circular microchannel with a blazed grating imprinted onto its bottom. (b) Schematic drawing of the blazed grating with the incident and transmitted laser beams.

Fig. 2.
Fig. 2.

Optofluidic switch. (a) Layout of microchannels in the device: the flow layer (black and red) with four inlets (in0–in3), two vents (v1 and v2), and one outlet; the control layer (blue) with 5 inlets (c0–c4). The blazed grating is schematically shown as a patterned area. (b) A photograph of an actual microfluidic PDMS chip bonded to a cover glass.

Fig. 3.
Fig. 3.

Fabrication of the optofluidic switch. (a) Fabrication of the first layer of PDMS, step-by-step. (b) Fabrication of the second layer of PDMS with imprinted blazed grating. (c) Assembly of the device.

Fig. 4.
Fig. 4.

Transmitted laser light recorded by the CCD camera. (a)–(d) the switch is in the states 0–3, respectively. Dashed boxes in (d) indicate zones 0–3, from left to right. Scale bar 400 µm.

Fig. 5.
Fig. 5.

Powers of laser light (in arbitrary units) directed to outputs 0–3 of the switch (measured in zones 0–3) as functions of time during a typical series of switching events. Powers in the outputs 0–3 are shown in black, blue, red, and green, respectively.

Fig. 6.
Fig. 6.

The portions of the power of incident laser beam (TE mode) directed to the optical outputs 1–3 of the switch as functions of the mismatch, Δn=n 2 n 2,m , between the actual refractive index of the liquid, n 2, and the index, n 2,m , corresponding to the maximum of diffraction in mth order (as given by Eq. 1). Plots in (a)–(d) correspond to m=0–3 (and the switch in the states 0–3), respectively. Power directed to the optical outputs 0–3 is plotted in blue, green, red, and black, respectively. Lines show results of numerical simulations obtained with multi-wave coupling analysis; symbols show results of numerical solutions of the wave equation.

Tables (1)

Tables Icon

Table 1. Power of light (in dB) measured for the 4 optical outputs in the 4 states of the switch, normalized to the power of the 0th output in state 0 of the switch.a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( n 1 n 2 ) h = λm ,
sin ( α m ) = λm Λ = ( n 1 n 2 ) h Λ

Metrics