Abstract

A new scanning microscope scheme which can map both phase and amplitude change of the probe beam is introduced. We will show that the true surface structure can be imaged by using the results of phase measurements while the amplitude image represents the map of the magnitude of the effective local reflection coefficient (ELRC). Relation between the surface structure and the ELRC is discussed. Spatial resolution is 0.67µm which is limited by diffraction and the precision for measuring point-to-point variation of the average height of the surface structure is a few nanometers. Potential of this microscopy on surface diagnostics is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Metthews, D. K. Hamilton, and C. J. R. Sheppard, "Surface profiling by phase-locked interferometry," Appl. Opt. 25, 2372-2374 (1986).
    [CrossRef]
  2. H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
    [CrossRef]
  3. J. S. Hartman, R. L. Gordon, and D. L. Lessor, "Quantitative surface topography determination by Nomatski reflection microscopy 2: Miceoscope modification, calibration, and planar sample experiments," Appl. Opt. 19, 2998-3009 (1980)
    [CrossRef] [PubMed]
  4. C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
    [CrossRef]
  5. C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, "Scanning differential phase contrast optical microscope: application to surface studies," Appl. Opt. 14, 2373-2379 (1985).
    [CrossRef]
  6. N. A. Massie, R. D. Nelson, and S. Holly, "High-performance real-time heterodyne interferometry," Appl. Opt. 18, 1797-1803 (1979)
    [CrossRef] [PubMed]
  7. L. Juárez P., M. Cywiak, M. Servín, and J.M. Flores, "Three Gaussian beam interferometric profilometer applied to the characterization of an optical flat," Opt. Express 15, 5277-5287 (2007)
    [CrossRef]
  8. K. Cho, D. L. Mazzoni, and C. C. Davis, "Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy," Opt. Lett. 18, 232-234 (1993)
    [CrossRef] [PubMed]
  9. D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
    [CrossRef]
  10. C. Wu, "Heterodyne interferometric system with subnanometer accuracy for measurement of straightness," Appl. Opt. 43, 3812-3816 (2004)
    [CrossRef] [PubMed]
  11. M. Chiu, B. Shih, and C. Lai, "Laser-scanning angle deviation microscopy," Appl. Phys. Lett. 90, 021111-3 (2007)
    [CrossRef]
  12. M. G. Somekh, M. S. Valera, and R. K. Appel, "Scanning heterodyne confocal differential phase and intensity microscope," Appl. Opt. 34, 4857-4868 (1995)
    [CrossRef] [PubMed]
  13. X. Jiang, K. Wang, and H. Martin, "Near common-path optical fiber interferometer for potentially fast on-line microscale-nanoscale surface measurement," Opt. Lett. 31, 3603-3605 (2006)
    [CrossRef] [PubMed]
  14. C. W. Sayre, "Complete wireless design," 2nd Ed., McGraw Hill (2008)
  15. M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)
  16. M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
    [CrossRef]
  17. C. C. Davis, "Building small, extremely sensitive practical interferometers for sensor applications," Nuc. Phys. B 6, 290-297 (1989)
    [CrossRef]

2007

2006

2005

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

2004

2002

H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
[CrossRef]

1999

M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)

1995

1993

K. Cho, D. L. Mazzoni, and C. C. Davis, "Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy," Opt. Lett. 18, 232-234 (1993)
[CrossRef] [PubMed]

D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
[CrossRef]

1989

C. C. Davis, "Building small, extremely sensitive practical interferometers for sensor applications," Nuc. Phys. B 6, 290-297 (1989)
[CrossRef]

1987

M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
[CrossRef]

1986

1985

C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, "Scanning differential phase contrast optical microscope: application to surface studies," Appl. Opt. 14, 2373-2379 (1985).
[CrossRef]

1980

1979

Appel, R. K.

Chao, C.

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

Chiu, M.

M. Chiu, B. Shih, and C. Lai, "Laser-scanning angle deviation microscopy," Appl. Phys. Lett. 90, 021111-3 (2007)
[CrossRef]

Cho, K.

H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
[CrossRef]

D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
[CrossRef]

K. Cho, D. L. Mazzoni, and C. C. Davis, "Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy," Opt. Lett. 18, 232-234 (1993)
[CrossRef] [PubMed]

Collet, M. J.

M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
[CrossRef]

Cywiak, M.

M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)

Davis, C. C.

D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
[CrossRef]

K. Cho, D. L. Mazzoni, and C. C. Davis, "Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy," Opt. Lett. 18, 232-234 (1993)
[CrossRef] [PubMed]

C. C. Davis, "Building small, extremely sensitive practical interferometers for sensor applications," Nuc. Phys. B 6, 290-297 (1989)
[CrossRef]

Gardiner, C. W.

M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
[CrossRef]

Gordon, R. L.

Hamilton, D. K.

Hartman, J. S.

Holly, S.

Jeong, H.

H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
[CrossRef]

Jiang, X.

Kim, J. H.

H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
[CrossRef]

Lai, C.

M. Chiu, B. Shih, and C. Lai, "Laser-scanning angle deviation microscopy," Appl. Phys. Lett. 90, 021111-3 (2007)
[CrossRef]

Lessor, D. L.

Loudon, R.

M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
[CrossRef]

Martin, H.

Massie, N. A.

Mazzoni, D. L.

D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
[CrossRef]

K. Cho, D. L. Mazzoni, and C. C. Davis, "Measurement of the local slope of a surface by vibrating-sample heterodyne interferometry: a new method in scanning microscopy," Opt. Lett. 18, 232-234 (1993)
[CrossRef] [PubMed]

Metthews, H. J.

Nelson, R. D.

See, C. W.

C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, "Scanning differential phase contrast optical microscope: application to surface studies," Appl. Opt. 14, 2373-2379 (1985).
[CrossRef]

Sheppard, C. J. R.

Shih, B.

M. Chiu, B. Shih, and C. Lai, "Laser-scanning angle deviation microscopy," Appl. Phys. Lett. 90, 021111-3 (2007)
[CrossRef]

Solano, C.

M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)

Somekh, M. G.

Tan, O.

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

Vaez Iravani, M.

C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, "Scanning differential phase contrast optical microscope: application to surface studies," Appl. Opt. 14, 2373-2379 (1985).
[CrossRef]

Valera, M. S.

Wade, G.

M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)

Wang, K.

Wang, Z.

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

Wickramasinghe, H. K.

C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, "Scanning differential phase contrast optical microscope: application to surface studies," Appl. Opt. 14, 2373-2379 (1985).
[CrossRef]

Wu, C.

Zhu, Q.

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Chiu, B. Shih, and C. Lai, "Laser-scanning angle deviation microscopy," Appl. Phys. Lett. 90, 021111-3 (2007)
[CrossRef]

J. Lightwave Technol.

D. L. Mazzoni, K. Cho, and C. C. Davis, "A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures," J. Lightwave Technol. 11, 1158-1161 (1993)
[CrossRef]

J. Mod. Opt

M. J. Collet, R. Loudon, and C. W. Gardiner, "Quantum theory of optical homodyne and heterodyne detection," J. Mod. Opt,  34, 881-902 (1987)
[CrossRef]

Nuc. Phys. B

C. C. Davis, "Building small, extremely sensitive practical interferometers for sensor applications," Nuc. Phys. B 6, 290-297 (1989)
[CrossRef]

Opt. Comm.

H. Jeong, J. H. Kim, and K. Cho, "Complete mapping of complex reflection coefficient of a surface using a scanning homodyne multiport interferometer," Opt. Comm. 204, 45-52 (2002)
[CrossRef]

Opt. Express

Opt. Lett.

R. Mex. Fis.

M. Cywiak, C. Solano, and G. Wade, "Scanning laser acoustic microscopy Using Derivative Quadrature Detection," R. Mex. Fís.  45, 260-265 (1999)

Rev. Sci. Instrum

C. Chao, Z. Wang, Q. Zhu, and O. Tan, "Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices," Rev. Sci. Instrum 76, 063906-4 (2005)
[CrossRef]

Other

C. W. Sayre, "Complete wireless design," 2nd Ed., McGraw Hill (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of experimental arrangement. In the figure, BS’s are beam splitters, PBS’s are polarizing beam splitters, HWP’s are half-wave plates, QWP is a quarter-wave plate, OLis a microscope objective lens, PD’s are photodiodes, OI is an optical isolator, and LO and RF are local oscillator and rf-input port of a I/Q-demodulator.

Fig. 2.
Fig. 2.

The FFT spectra of phase measurements. The signal was modulated at 40 Hz and the term ‘dB rad’ stands for 10 log (phase change in radian).

Fig. 3.
Fig. 3.

The cross-sectional view of the strip line structure (a), the conventional microscope image of the structure (b).

Fig. 4.
Fig. 4.

3D plot of the surface structure (a), and amplitude of the PB (b) obtained by use of our proposed scanning I/Q-heterodyne scheme.

Fig. 5.
Fig. 5.

Line scan images of the height and amplitude. The red and the blue trace represent the amplitude and the height variation along the scanning line, respectively.

Fig. 6.
Fig. 6.

Reflection and back scattering geometries of the PB at two different locations.

Fig. 7.
Fig. 7.

2D contour plot of the surface structure (a), and amplitude (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

v beart ( x , y ) = R A S ( x , y ) A P cos [ Δ ω t φ m ( x , y ) φ 0 ] ,
v LO = R P LO cos ( Δ ω t φ LO ) ,
v I ( x , y ) = R 2 A S ( x , y ) A R P LO cos [ φ m ( x , y ) Δ φ s ] ,
v Q ( x , y ) = R 2 A S ( x , y ) A R P LO sin [ φ m ( x , y ) Δ φ s ] .
ϕ m ( x , y ) = Δ ϕ S + tan 1 [ v Q ( x , y ) v I ( x , y ) ]
v I 2 + v Q 2 = R 2 A s ( x , y ) A R P LO .
φ m ( x + Δ x , y ) ϕ m ( x , y ) = 2 π λ n [ h ( x + Δ x , y ) h ( x , y ) ] ,
Δ φ min = 32 h v Δ f η P ,

Metrics