Abstract

A compact all solid state continuous-wave biphoton source, tunable around 488 nm, for quantum spectroscopic applications based on a frequency doubled diode laser system is presented. Copolarized photon pairs in the fundamental transversal mode could be generated at 976 nm by spontaneous parametric down conversion inside a type-0 quasi phase matched periodically poled lithium niobate waveguide crystal with an efficiency of 8·10-6. A high flux rate greater than 107 photon pairs per second has been achieved at pump powers in the µW range resulting in more than 7·109 photon pairs/s·mW. Further a detailed investigation of the spectral behavior and the flux rate as a function of the detuning from the degenerated case is presented.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate

Bao-Sen Shi and Akihisa Tomita
J. Opt. Soc. Am. B 21(12) 2081-2084 (2004)

Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals

Marco Fiorentino, Sean M. Spillane, Raymond G. Beausoleil, Tony D. Roberts, Philip Battle, and Mark W. Munro
Opt. Express 15(12) 7479-7488 (2007)

Integrated optical source of polarization entangled photons at 1310 nm

A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli
Opt. Express 17(2) 1033-1041 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  3. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
    [Crossref]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
    [Crossref]
  5. A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999).
    [Crossref]
  6. A. Yabushita and T. Kobayashi, “Spectroscopy by frequency entangled photon pairs,” Phys. Rev. A 69, 013806-1–013806-4 (2004).
    [Crossref]
  7. A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
    [Crossref]
  8. P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, “Compact source of polarization-entangled photon pairs,” Opt. Express 12, 276–281 (2004).
    [Crossref] [PubMed]
  9. J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
    [Crossref]
  10. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
    [Crossref]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [Crossref]
  12. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [Crossref]
  13. B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
    [Crossref]
  14. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
    [Crossref] [PubMed]
  15. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref] [PubMed]
  16. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
    [Crossref]
  17. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarizationentangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293–295 (2005).
    [Crossref] [PubMed]
  18. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-µm band with periodically poled lithium niobate waveguide,” Opt. Express 15, 1679–1683 (2007).
    [Crossref] [PubMed]
  19. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
    [Crossref] [PubMed]
  20. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
    [Crossref] [PubMed]
  21. K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
    [Crossref]
  22. D.I. Lee and T. Goodson III, “Entangled Photon Absorption in an Organic Porphyrin Dendrimer,” J. Phys. Chem. B,  110, 25582–25585 (2006).
    [Crossref] [PubMed]
  23. T. B. Pittman, “Development of a Parametric Down-Conversion Source for Two-Photon Absoption Experiments,” Proc. SPIE 6710, 67100B (2007).
    [Crossref]
  24. J. Javanainen and P. L. Gould, “Linear intensity dependence of a two-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
    [Crossref] [PubMed]
  25. H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
    [Crossref]
  26. M. C. Teich and B. E. A. Saleh, “Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons),” Ceskloslovenský casopis pro fyziku 47, 3–8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.
  27. B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
    [Crossref]
  28. V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett. 27, 167–169 (2002).
    [Crossref]
  29. A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
    [Crossref]
  30. A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15, 6976–6981 (2007).
    [Crossref] [PubMed]
  31. A. Jechow and R. Menzel, “Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity,” Appl. Phys. B 89, 507–511 (2007).
    [Crossref]
  32. International Organization for Standardization, “Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor,” ISO 11146, (Geneva, 2004).
  33. W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
    [Crossref] [PubMed]

2007 (13)

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

T. B. Pittman, “Development of a Parametric Down-Conversion Source for Two-Photon Absoption Experiments,” Proc. SPIE 6710, 67100B (2007).
[Crossref]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[Crossref]

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

A. Jechow and R. Menzel, “Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity,” Appl. Phys. B 89, 507–511 (2007).
[Crossref]

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-µm band with periodically poled lithium niobate waveguide,” Opt. Express 15, 1679–1683 (2007).
[Crossref] [PubMed]

A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15, 6976–6981 (2007).
[Crossref] [PubMed]

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
[Crossref] [PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
[Crossref] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

2006 (1)

D.I. Lee and T. Goodson III, “Entangled Photon Absorption in an Organic Porphyrin Dendrimer,” J. Phys. Chem. B,  110, 25582–25585 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, “Compact source of polarization-entangled photon pairs,” Opt. Express 12, 276–281 (2004).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency entangled photon pairs,” Phys. Rev. A 69, 013806-1–013806-4 (2004).
[Crossref]

2003 (1)

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

2002 (4)

2001 (2)

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
[Crossref]

W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
[Crossref] [PubMed]

1999 (1)

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999).
[Crossref]

1998 (1)

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

1997 (3)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

M. C. Teich and B. E. A. Saleh, “Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons),” Ceskloslovenský casopis pro fyziku 47, 3–8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

1990 (1)

J. Javanainen and P. L. Gould, “Linear intensity dependence of a two-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[Crossref] [PubMed]

Akemann, W.

W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
[Crossref] [PubMed]

Aoki, T.

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Asobe, M.

Baldi, P.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Battle, P.

Beausoleil, R. G.

Bourennane, M.

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Cenkier, M.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

De Micheli, M.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Fedrizzi, A.

Fei, H.-B.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Fujii, G.

Fujimura, M.

Furusawa, A.

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Gilchrist, A.

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Glancy, S.

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Goodson III, T.

D.I. Lee and T. Goodson III, “Entangled Photon Absorption in an Organic Porphyrin Dendrimer,” J. Phys. Chem. B,  110, 25582–25585 (2006).
[Crossref] [PubMed]

Gould, P. L.

J. Javanainen and P. L. Gould, “Linear intensity dependence of a two-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[Crossref] [PubMed]

Guo, G. C.

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

Herbst, T.

Honjo, T.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[Crossref]

Inoue, K.

Inoue, S.

Javanainen, J.

J. Javanainen and P. L. Gould, “Linear intensity dependence of a two-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[Crossref] [PubMed]

Jechow, A.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

A. Jechow and R. Menzel, “Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity,” Appl. Phys. B 89, 507–511 (2007).
[Crossref]

A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15, 6976–6981 (2007).
[Crossref] [PubMed]

Jennewein, T.

Jiang, Y. K.

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

Jost, B. M.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

Kalachev, A. A.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Kalashnikov, D. A.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Kalinkin, A. A.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Knöpfel, T.

W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
[Crossref] [PubMed]

Kobayashi, T.

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency entangled photon pairs,” Phys. Rev. A 69, 013806-1–013806-4 (2004).
[Crossref]

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Kurimura, S.

Kurtsiefer, C.

Kurtsiefer, Ch.

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
[Crossref]

Kurz, J. R.

Langrock, C.

Lee, D.I.

D.I. Lee and T. Goodson III, “Entangled Photon Absorption in an Organic Porphyrin Dendrimer,” J. Phys. Chem. B,  110, 25582–25585 (2006).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Menzel, R.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

A. Jechow and R. Menzel, “Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity,” Appl. Phys. B 89, 507–511 (2007).
[Crossref]

A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15, 6976–6981 (2007).
[Crossref] [PubMed]

V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett. 27, 167–169 (2002).
[Crossref]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Migdall, A.

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999).
[Crossref]

Milburn, G. J.

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Mitrofanova, T. G.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Motoya, M.

Munro, M. W.

Munro, W. J.

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Nam, S. W.

Namekata, N.

Nishida, Y.

Ostrowsky, D. B.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Parameswaran, K. R.

Pittman, T. B.

T. B. Pittman, “Development of a Parametric Down-Conversion Source for Two-Photon Absoption Experiments,” Proc. SPIE 6710, 67100B (2007).
[Crossref]

Popescu, S.

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

Poppe, A.

Raab, V.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett. 27, 167–169 (2002).
[Crossref]

Raj, C. Dinesh

W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
[Crossref] [PubMed]

Ralph, T. C.

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Reidmatten, H.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Roberts, T. D.

Roussev, R. V.

Route, R. K.

Sacher, J.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

M. C. Teich and B. E. A. Saleh, “Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons),” Ceskloslovenský casopis pro fyziku 47, 3–8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

Samartsev, V. V.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Schmid, C.

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Shi, B. S.

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

Shkalikov, A. V.

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Skoczowsky, D.

Spillane, S. M.

Stry, S.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

Tadanaga, O.

Takesue, H.

Tanzilli, S.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Teich, M. C.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

M. C. Teich and B. E. A. Saleh, “Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons),” Ceskloslovenský casopis pro fyziku 47, 3–8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tittle, W.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Tomita, A.

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

Trojek, P.

Volz, J.

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
[Crossref]

Weinfurter, H.

P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, “Compact source of polarization-entangled photon pairs,” Opt. Express 12, 276–281 (2004).
[Crossref] [PubMed]

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

Xie, X.

Yabushita, A.

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency entangled photon pairs,” Phys. Rev. A 69, 013806-1–013806-4 (2004).
[Crossref]

Yamamoto, Y.

Yoshino, K.

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Zeilinger, A.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Zhai, C.

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

Zhang, Q.

Appl. Phys. B (1)

A. Jechow and R. Menzel, “Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity,” Appl. Phys. B 89, 507–511 (2007).
[Crossref]

Appl. Phys. Lett. (2)

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically-poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

J. Volz, Ch. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869–871 (2001).
[Crossref]

C. R. Physique (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[Crossref]

Ceskloslovenský casopis pro fyziku (1)

M. C. Teich and B. E. A. Saleh, “Mikroskopie s kvantove provázanými fotony (Microscopy with Quantum-Entangled Photons),” Ceskloslovenský casopis pro fyziku 47, 3–8 (1997), (english translation) http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf.

Eur. Phys. J. D (1)

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

J. Phys. Chem. B (1)

D.I. Lee and T. Goodson III, “Entangled Photon Absorption in an Organic Porphyrin Dendrimer,” J. Phys. Chem. B,  110, 25582–25585 (2006).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, and V. V. Samartsev, “Biphoton spectroscopy of YAG:Er3+ crystal,” Laser Phys. Lett. 4, 722–725 (2007).
[Crossref]

Nature (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)  390, 575–579 (1997).
[Crossref]

Opt. Commun. (2)

B. S. Shi, C. Zhai, G. C. Guo, Y. K. Jiang, and A. Tomita, “Efficient generation of a photon pair in a bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 278, 363–367 (2007).
[Crossref]

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161–165 (2007).
[Crossref]

Opt. Express (7)

A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15, 6976–6981 (2007).
[Crossref] [PubMed]

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-µm band with periodically poled lithium niobate waveguide,” Opt. Express 15, 1679–1683 (2007).
[Crossref] [PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
[Crossref] [PubMed]

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
[Crossref] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, “Compact source of polarization-entangled photon pairs,” Opt. Express 12, 276–281 (2004).
[Crossref] [PubMed]

Opt. Lett. (3)

Photochem. Photobiol. (1)

W. Akemann, C. Dinesh Raj, and T. Knöpfel, “Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides,” Photochem. Photobiol. 74, 356–363 (2001).
[Crossref] [PubMed]

Phys. Rev. A (4)

J. Javanainen and P. L. Gould, “Linear intensity dependence of a two-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[Crossref]

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency entangled photon pairs,” Phys. Rev. A 69, 013806-1–013806-4 (2004).
[Crossref]

Phys. Rev. Lett. (3)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-Induced Two-Photon Transparency,” Phys. Rev. Lett. 78, 1679–1682 (1997).
[Crossref]

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[Crossref]

Phys. Today (1)

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999).
[Crossref]

Proc. SPIE (1)

T. B. Pittman, “Development of a Parametric Down-Conversion Source for Two-Photon Absoption Experiments,” Proc. SPIE 6710, 67100B (2007).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (1)

International Organization for Standardization, “Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor,” ISO 11146, (Geneva, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup of the biphoton source. A frequency doubled external cavity diode laser (ECDL) is used as pump for SPDC in a 10 mm PPLN waveguide crystal. The ECDL consists of a broad area laser diode (BAL), a fast axis collimator (FAC), a half wave-plate (HWP) and a diffraction grating in Littrow configuration. For SHG a 10 mm bulk PPLN crystal was used with two cylindrical lenses L1 and L2 for beam shaping and a collimation lens L3. The SH light was coupled with an aspherical lenses L4 and the correlated light is coupled in a 50:50 fiber beam splitter using L5 and L6. Avalanche photo diodes (APD) connected to a time correlated single photon counting device (TCSPCD) have been used for detection.

Fig. 2.
Fig. 2.

(a) Output power of the frequency doubled ECDL as a function of the laser diode injection current. (b) Output power of the infrared ECDL emission as a function of the wavelength at an injection current of 2.2 A.

Fig. 3.
Fig. 3.

SHG QPM wavelength as a function of the crystal temperature for the 1 cm bulk PPLN crystal (red) and the 1 cm waveguide PPLN crystal (black). The temperature coefficients were determined to be 0.04 nm/K for both the bulk and the waveguide material.

Fig. 4.
Fig. 4.

Flux-rate of the generated biphotons as a function of the incident number of photons coupled to the waveguide crystal.

Fig. 5.
Fig. 5.

Coincidence counts measured at a blue light pump power of 2 µW inside the waveguide crystal. The coincidence count rate was 4.5·104/s.

Fig. 6.
Fig. 6.

Intensity distribution of the SPDC light in front of the fiber coupler. A nearly diffraction limited beam is assumed.

Fig. 7.
Fig. 7.

Pump wavelength for the SPDC count rate maximum as a function of the temperature. For comparison the black curve shows the SHG wavelength of this crystal as a function of the temperature (as shown in Fig. 3).

Fig. 8.
Fig. 8.

(a–d) Spectra of the SPDC light coupled into a single mode fiber and measured with an optical spectrum analyzer for four different temperatures of the waveguide (SPDC) crystal. The temperature of the bulk (SHG) crystal was constant.

Fig. 9.
Fig. 9.

Measured coincidences per second as a function of the waveguide temperature at a coupled blue pump power of 2 µW. At a pump wavelength of 487.4 nm the degenerated case is reached at 112° C and the highest count rate of 4.5·104 coincidences/s was obtained.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = R ETPA + R TPA = σ ETPA · ϕ + σ TPA · ϕ 2 .
ϕ critical = σ ETPA σ TPA .

Metrics