Abstract

A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common-multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
    [CrossRef]
  2. J. N. Maran, S. LaRochelle, and P. Besnard, "Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature," Opt. Lett. 28, 2082-2084(2003).
    [CrossRef] [PubMed]
  3. J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
    [CrossRef] [PubMed]
  4. D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
    [CrossRef] [PubMed]
  5. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
    [CrossRef]
  6. T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
    [CrossRef]
  7. C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003).
    [CrossRef]
  8. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
    [CrossRef]
  9. W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
    [CrossRef] [PubMed]
  10. J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
    [CrossRef]
  11. W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
    [CrossRef]
  12. J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
    [CrossRef]
  13. G-R Lin, I-H Chiu, and M-C Wu, "1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression," Opt. Express 13, 1008-1014 (2005).
    [CrossRef] [PubMed]
  14. M. J. Connelly,"Wideband semiconductor optical amplifier steady-state numericalmodel Quantum Electron," IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  15. F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic New York, 1989).

2007 (3)

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
[CrossRef]

2006 (1)

W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
[CrossRef] [PubMed]

D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
[CrossRef] [PubMed]

2003 (2)

C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003).
[CrossRef]

J. N. Maran, S. LaRochelle, and P. Besnard, "Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature," Opt. Lett. 28, 2082-2084(2003).
[CrossRef] [PubMed]

2002 (2)

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

2001 (1)

M. J. Connelly,"Wideband semiconductor optical amplifier steady-state numericalmodel Quantum Electron," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

2000 (1)

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

Avramopoulos, H.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

Barry, J. R.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Bennion, I.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Besnard, P.

Bintjas, C.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Chang, G-K.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Chang, H. H.

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

Chen, L. R.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Chiu, I-H

Chu, S. W.

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

Chung, Y

D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
[CrossRef] [PubMed]

Connelly, M. J.

M. J. Connelly,"Wideband semiconductor optical amplifier steady-state numericalmodel Quantum Electron," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Deng, Z. C.

J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
[CrossRef] [PubMed]

Dudley, J.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Fok, M. P.

W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
[CrossRef] [PubMed]

Giannone, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Goedgebuer, J-P.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Hanna, M.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Houbavlis, T.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

LaRochelle, S.

Lee, C. G.

C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003).
[CrossRef]

Lin, G-R

Lin, W.

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

Liu, L.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Liu, T. M.

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

Maran, J. N.

Moon, D. S.

D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
[CrossRef] [PubMed]

Ngo, N. Q.

J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
[CrossRef]

Paek, U. C.

D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
[CrossRef] [PubMed]

Park, C. S.

C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003).
[CrossRef]

Pleros, N.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Pudo, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Shu, C.

W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
[CrossRef] [PubMed]

Sun, C. K.

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

Sun, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Tang, W. W.

W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
[CrossRef] [PubMed]

Tjin, S. C.

J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
[CrossRef]

Tong, F. W.

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

Vasseur, J.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Vlachos, K.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

Wai, P. K. A.

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

Wang, D. N.

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

Wang, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Wu, M-C

Yang, J.

J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
[CrossRef]

Yao, J.

J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
[CrossRef] [PubMed]

Yao, J. P.

J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
[CrossRef] [PubMed]

Yu, J.

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

Zhang, L.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Zhang, W.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Zoiros, K.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

Electron. Lett. (1)

F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. J. Connelly,"Wideband semiconductor optical amplifier steady-state numericalmodel Quantum Electron," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002).
[CrossRef]

J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000).
[CrossRef]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002).
[CrossRef]

Opt Express (1)

D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Express. (2)

J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004).
[CrossRef] [PubMed]

W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007).
[CrossRef]

Opt. Lett. (1)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

The schematic diagrams of backward optical-injection mode-locked (a) SOA and (b) weak-resonant-cavity FPLD.

Fig. 2.
Fig. 2.

Output spectrum of the mode-locked weak-resonant-cavity FPLD fiber ring laser.

Fig. 3.
Fig. 3.

The output spectrum: with FP etalon (black curve) and without FP etalon (red curve).

Fig. 4.
Fig. 4.

Single-channel output with filter (red curve) and multi-channel output without filter (black curve)

Fig. 5.
Fig. 5.

Dynamic frequency chirp of a multi-channel pulse.

Fig. 6.
Fig. 6.

The changed of mode-locked FPLD fiber ring laser pulse shape when increasing the DCF length. (oscilloscope)

Fig. 7.
Fig. 7.

Auto correlation traces of the mode-locked weak-resonant-cavity FPLD fiber-ring laser dispersion compensated at different DCF lengths.

Fig. 8.
Fig. 8.

Dynamic frequency chirp vs. DCF length.

Fig. 9.
Fig. 9.

Dispersion compensated pulsewidth vs. DCF length.

Fig. 10.
Fig. 10.

Maximum coarse wavelength tuning range and single-mode spectra of the mode-locked FPLD based fiber ring link.

Fig. 11.
Fig. 11.

Corresponding pulsewidth of the mode-locked FPLD based fiber ring link under a coarse wavelength detuning.

Fig. 12.
Fig. 12.

Fine detuning 200GHz DWDM channel spectra of the mode-locked FPLD based fiber ring link.

Fig. 13.
Fig. 13.

Corresponding pulsewidth of the mode-locked FPLD based fiber ring link under a 200GHz DWDM channel filtering.

Metrics