Abstract

We present an experimental and theoretical study on the optical properties of arrays of gold nanoparticle in-tandem pairs (nanosandwiches). The well-ordered Au pairs with diameters down to 35 nm and separation distances down to 10 nm were fabricated using extreme ultraviolet (EUV) interference lithography. The strong near-field coupling of the nanoparticles leads to electric and magnetic resonances, which can be well reproduced by Finite-Difference Time-Domain (FDTD) calculations. The influence of the structural parameters, such as nanoparticle diameter and separation distance, on the hybridized modes is investigated. The energy and lifetimes of these modes are studied, providing valuable physical insight for the design of novel plasmonic structures and metamaterials.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. G. C. Schatz and R. P Duyne, "Electromagnetic mechanism of surface enhanced spectroscopy," in Handbook of Vibrational Spectroscopy, J. M. Chalmers, P. R. Griffiths, eds., (John Wiley, 2002).
  3. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007).
    [CrossRef]
  5. M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986)
    [CrossRef]
  6. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-828 (1985).
    [CrossRef]
  7. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  8. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
    [CrossRef]
  9. C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
    [CrossRef] [PubMed]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  12. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  13. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006).
    [CrossRef] [PubMed]
  14. K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
    [CrossRef]
  15. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
    [CrossRef] [PubMed]
  16. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
    [CrossRef]
  17. N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lthography," Opt. Express 15, 501-507 (2007).
    [CrossRef] [PubMed]
  18. H.-K. Yuan, K. C. Uday, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express 15, 1076-1082 (2007).
    [CrossRef] [PubMed]
  19. H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
    [CrossRef]
  20. Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
    [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition (Artech House, 2005).
  22. CRC Handbook of Chemistry and Physics, 87th Ed. (CRC Press, 2006).
  23. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  24. A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
    [CrossRef]
  25. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
    [CrossRef]
  26. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  27. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  28. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
    [CrossRef] [PubMed]
  29. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling Fano interference in a plasmonic lattice," Phys. Rev. B. 76, 201405(R) (2007).</>
    [CrossRef]

2007

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
[CrossRef] [PubMed]

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lthography," Opt. Express 15, 501-507 (2007).
[CrossRef] [PubMed]

H.-K. Yuan, K. C. Uday, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express 15, 1076-1082 (2007).
[CrossRef] [PubMed]

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

2006

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

2005

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

2004

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

2003

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

2002

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

2000

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1986

M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986)
[CrossRef]

1985

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-828 (1985).
[CrossRef]

1982

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
[CrossRef]

1961

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
[CrossRef]

Abrishamian, M. S.

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Boltasseva, A.

Cai, W.

Dahmen, C.

C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
[CrossRef] [PubMed]

Dmitriev, A.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

Ekinci, Y.

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Enkrich, C.

Fan, S.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fano, U.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
[CrossRef]

Feldmann, J.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Feth, N.

Franzl, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Gobrecht, J.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
[CrossRef]

Granpayeh, N.

Gunnarson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Käll, M.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Käser, P.

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Kildishev, A. V.

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kreibig, U.

M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986)
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
[CrossRef]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Linden, S.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-828 (1985).
[CrossRef]

Nealey, P. F.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Padeste, C.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Pakizeh, T.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006).
[CrossRef] [PubMed]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Park, S. J.

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Quinten, M.

M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986)
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Schmidt, B.

C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
[CrossRef] [PubMed]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Shalaev, V. M.

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Solak, H. H.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Stoykovich, M. P.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Su, K.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

Uday, K. C.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

von Plessen, G.

C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
[CrossRef] [PubMed]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wegener, M.

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Wilk, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

Wokaun, A.

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
[CrossRef]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Yuan, H.-K.

Zhang, X.

K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Annu. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007).
[CrossRef]

Appl. Phys. Lett.

K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

J. Phys. Chem. B

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Microelectron. Eng.

Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007).
[CrossRef]

Nano Lett.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Express

Phys. Rev.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
[CrossRef]

Phys. Rev. B

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Phys. Rev. E

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-828 (1985).
[CrossRef]

Science

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Small

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007).
[CrossRef] [PubMed]

Surf. Sci.

M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986)
[CrossRef]

Vac. Sci. Technol. B

H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition (Artech House, 2005).

CRC Handbook of Chemistry and Physics, 87th Ed. (CRC Press, 2006).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

G. C. Schatz and R. P Duyne, "Electromagnetic mechanism of surface enhanced spectroscopy," in Handbook of Vibrational Spectroscopy, J. M. Chalmers, P. R. Griffiths, eds., (John Wiley, 2002).

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling Fano interference in a plasmonic lattice," Phys. Rev. B. 76, 201405(R) (2007).</>
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SEM images of 2D arrays of Au NP pairs with diameters of (a) 105 nm; (b) 50 nm; and (c) 35 nm. The array period is 200 nm. (d) Schematic cross-section of Au NP pairs with a conical shape.

Fig. 2.
Fig. 2.

Measured (a) transmission and (b) reflection spectra, and (c) extracted absorption spectra for Au NP pairs with diameters of D=105, 87, 77, 70, 53, 46, 38, and 35 nm. The array period is p=200 nm, s=10 nm, and t=20 nm.

Fig. 3.
Fig. 3.

Experimental (a) absorption and (b) reflection spectra of single NP arrays and paired NP arrays with gaps of s=10, 20, and 35 nm; p=200 nm, D=105 nm, and t=20 nm.

Fig. 4.
Fig. 4.

Calculated (a) absorption and (b) reflection spectra of Au NP pair arrays with diameters of D=105, 87, 77, 70, 53, 46, 38, and 35 nm; p=200 nm, s=10 nm, and t=20 nm.

Fig. 5.
Fig. 5.

Comparison of experimental and theoretical reflection and absorption spectra for paired Au NPs with (a) s=10 nm and (b) s=35 nm; p=200 nm, D=105 nm, and t=20 nm. The solid lines represent experimental data, while the dashed lines result from FDTD calculations. Black lines stand for reflection spectra and red lines denote absorption spectra.

Fig. 6.
Fig. 6.

Calculated electric and magnetic field enhancements (|Ex |, |Ez |, |Hy |) and electric field phase distribution (ϕ(Ex )) in the vicinity of Au NP pairs (a) at the symmetric resonance (λ=585 nm) and (b) at the antisymmetric resonance (λ=826 nm); p=200 nm, s=10 nm, and t=20 nm. Incident field is polarized along the x axis.

Fig. 7.
Fig. 7.

Resonant peak positions for various gaps and NP diameters. Circles and squares denote symmetric and antisymmetric resonances, respectively. The single NP case is depicted with triangles.

Fig. 8.
Fig. 8.

Lifetime and resonance energy of the plasmon modes for various NP gaps and diameters. Circles and squares denote symmetric and antisymmetric resonances, respectively; triangles stand for single NP arrays. The symbols for a certain gap value are connected with lines. The corresponding NP diameters are provided at the ends of the curves.

Fig. 9.
Fig. 9.

FDTD calculated reflection spectra (black) and best-fit curves (red) using a Fano-type model for paired Au NP arrays with (a) s=35 nm and D=105 nm, and (b) s=10 nm and D=105 nm. The best-fit parameters for (a) are a=0.024, ba =0.71, φa =0.32π, Γa =78 meV, Ea =1.84 eV, bs =0.54, φs =0, Γs =139 meV, and Es =2.11 eV; and for (b) are a=0.002, ba =0.33, φa =0.15π, Γa =28 meV, Ea =1.49 eV, bs =0.67, φs =0, Γs =160 meV, and Es =2.08 eV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( ω ) = r ( ω ) 2 = a r + j = s , a b j Γ j e i φ j ћ ω E j + i Γ j 2 ,

Metrics