Abstract

Optical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering. In contrast to combs from mode-locked lasers or microcavities, the absence of a resonator allows large tuning of the frequency spacing from tens of gigahertz to beyond teraHertz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [CrossRef]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  3. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
    [CrossRef] [PubMed]
  4. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
    [CrossRef] [PubMed]
  5. S.N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
    [CrossRef]
  6. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
    [CrossRef] [PubMed]
  7. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
    [CrossRef] [PubMed]
  8. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [CrossRef] [PubMed]
  9. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
    [CrossRef] [PubMed]
  10. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
    [CrossRef] [PubMed]
  11. J. C. Knight, “Photonic Crystal fibers,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  12. H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [CrossRef]
  13. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
    [CrossRef]
  14. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [CrossRef] [PubMed]
  15. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
    [CrossRef] [PubMed]
  16. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
    [CrossRef]
  17. C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
    [CrossRef] [PubMed]
  18. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Optical Fiber Optics, Academic Press, New York, 2001.
  20. H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
    [CrossRef]
  21. S. Pitois, J. Fatome, and G. Millot, “Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2008).
    [CrossRef]
  22. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
    [CrossRef]
  23. J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
    [CrossRef]
  24. J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
    [CrossRef]
  25. A. Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H.L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
    [CrossRef]
  26. L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [CrossRef] [PubMed]
  27. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]
  28. Jun Ye, Jin-Long Peng, R. Jason Jones, Kevin W. Holman, John L. Hall, David J. Jones, Scott A. Diddams, John Kitching, Sebastien Bize, James C. Bergquist, Leo W. Hollberg, Lennart Robertsson, and Long-Sheng Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
    [CrossRef]
  29. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
    [CrossRef] [PubMed]
  30. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
    [CrossRef]
  31. J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
    [CrossRef]
  32. M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.
  33. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
    [CrossRef]
  34. X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
    [CrossRef]
  35. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30, 3231–3233 (2005).
    [CrossRef] [PubMed]
  36. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
    [CrossRef]
  37. D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
    [CrossRef]
  38. C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
    [CrossRef] [PubMed]
  39. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
    [CrossRef]
  40. S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
    [CrossRef] [PubMed]
  41. Bingwei Xu, Yves Coello, Vadim V. Lozovoy, D. Ahmasi Harris, and Marcos Dantus, “Pulse shaping of octave spanning femtosecond laser pulses”, Opt. Express 14, 10939–10944 (2006).
    [CrossRef] [PubMed]
  42. M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
    [CrossRef] [PubMed]
  43. L. E. E. de Araujo, “Selective and efficient excitation of diatomic molecules by an ultrashort pulse train,” Phys. Rev. A 77, 033419 (2008).
    [CrossRef]

2008 (7)

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2008).
[CrossRef]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

A. Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H.L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
[CrossRef]

L. E. E. de Araujo, “Selective and efficient excitation of diatomic molecules by an ultrashort pulse train,” Phys. Rev. A 77, 033419 (2008).
[CrossRef]

2007 (7)

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
[CrossRef] [PubMed]

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

S.N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef] [PubMed]

2006 (6)

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

Bingwei Xu, Yves Coello, Vadim V. Lozovoy, D. Ahmasi Harris, and Marcos Dantus, “Pulse shaping of octave spanning femtosecond laser pulses”, Opt. Express 14, 10939–10944 (2006).
[CrossRef] [PubMed]

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

2005 (2)

Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30, 3231–3233 (2005).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
[CrossRef]

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

2003 (3)

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic Crystal fibers,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Jun Ye, Jin-Long Peng, R. Jason Jones, Kevin W. Holman, John L. Hall, David J. Jones, Scott A. Diddams, John Kitching, Sebastien Bize, James C. Bergquist, Leo W. Hollberg, Lennart Robertsson, and Long-Sheng Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[CrossRef]

2002 (2)

2001 (1)

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

1999 (3)

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

1998 (1)

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

1997 (1)

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

1994 (3)

J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
[CrossRef]

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[CrossRef] [PubMed]

1992 (1)

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Optical Fiber Optics, Academic Press, New York, 2001.

Apolonski, A.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

Araujo-Hauck, C.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Baltuska, A.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Barber, Z. W.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Bartels, A.

Beck, K. M.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Benedick, A. J.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Bergquist, J. C.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Bergquist, J.C.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Bergquist, James C.

Berkeland, D. J.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Bize, Sebastien

Blake, G. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Blatt, S.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Boerner, C.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Boggio, J. M. Chavez

Bowers, J. E.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Boyd, M. M.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Braje, D. A.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

Bratschitsch, R.

Brown, E. R.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Campbell, G. K.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Caponio, N.

J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
[CrossRef]

Carelli, G.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Cavalieri, A. L.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

Cerqueira S. Jr, A.

Champenois, C.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Chen, P.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Chou, S. Y.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Coello, Yves

Cruz, F. C.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Curtis, E.A.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

D’Odorico, S.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Dantus, Marcos

de Araujo, L. E. E.

L. E. E. de Araujo, “Selective and efficient excitation of diatomic molecules by an ultrashort pulse train,” Phys. Rev. A 77, 033419 (2008).
[CrossRef]

de Miranda, M. H. G.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Dekker, H.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
[CrossRef]

Del’Haye, P.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Delaney, M. J.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Diddams, S. A.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef] [PubMed]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
[CrossRef]

Diddams, S.A.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Diddams, Scott A.

Donley, E. A.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
[CrossRef]

Drullinger, R.E.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Dunlop, A. E.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Fatome, J.

S. Pitois, J. Fatome, and G. Millot, “Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2008).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
[CrossRef]

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

Fendel, P.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Ferber, S.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Finot, C.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

Fischer, M.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Foreman, S. M.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

Fortier, T. M.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Fragnito, H.L.

Gaidis, M. C.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Gilboney, K.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Glenday, A. G.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Gohle, Ch.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Goulielmakis, E.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Griebel, M.

Hagel, G.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Hall, J. L.

Hall, John L.

Hänsch, T. W.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hänsch, T.W.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Harris, D. Ahmasi

Heavner, T. P.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
[CrossRef]

Hentschel, M.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Hernandez-Figueroa, H. E.

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Hiu, R.

J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef] [PubMed]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
[CrossRef]

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Hollberg, Leo W.

Holman, Kevin W.

Holzwarth, R.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Houssin, M.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Itano, W. M.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

J., Ye

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

Jefferts, S. R.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Jin, Y.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Jones, David J.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

Jones, R. Jason

Jungner, P. A.

Kärtner, F. X.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Keller, U.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Kienberger, R.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

Kim, K.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Kirchner, M. S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

Kitching, John

Kleineberg, U.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

Kleine-Ostmann, T.

Knight, J. C.

Knoop, M.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Krausz, F.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Kroh, M.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Langhorst, C. S.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

Le Coq, Y.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Lea, S.N.

S.N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

Lee, W. D.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Lemke, N. D.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Levi, F.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Li, C.-Hao

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Lozovoy, Vadim V.

Ludlow, D.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Ludwig, R.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Ma, L. S.

Ma, Long-Sheng

Ma, X. F.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

Manescau, A.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Marembert, V.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Marian, A.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

Martin, M. J.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Massa, C. A.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef] [PubMed]

McIntosh, K. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Miller, J. D.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Millot, G.

S. Pitois, J. Fatome, and G. Millot, “Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2008).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
[CrossRef]

Millot, Guy

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

Moraes, J. C. S.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Moretti, A.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Murphy, M. T.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Nathan, M. I.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Newbury, N. R.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
[CrossRef] [PubMed]

Nguyen, D.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Oates, C. W.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Oates, C.W.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Oskay, W. H.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Osterman, S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

Parker, T. E.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Pasquini, L.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Peng, Jin-Long

Pereira, D.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Pervak, V.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

Phillips., D. F.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Pitois, S.

S. Pitois, J. Fatome, and G. Millot, “Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2008).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
[CrossRef]

Poli, N.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Pullela, R.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Pusl, J.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Quraishi, Q.

Ramond, T. M.

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Rieznik, A. A.

Robertsson, Lennart

Rodwell, M.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

Sasselov, D.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Scalabrin, A.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Schubert, C.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Scrinzi, A.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Sinardet, B.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

Sizmann, A.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Stalnaker, J. E.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Steinmayer, G.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stowe, M. C.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

Strumia, F.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Swann, W. C.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
[CrossRef] [PubMed]

Szentgyorgyi, A.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Telle, H. R.

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Telles, E. M.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

Thomsen, J. W.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

Udem, Th.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Uiberacker, M.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Vedel, F.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Vogel, K.R.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Walsworth, R. L.

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

Weber, H. G.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Williams, P. A.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
[CrossRef] [PubMed]

Williamson, F.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

Wineland, D. J.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Wineland, D.J.

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
[CrossRef]

Xu, Bingwei

Yakovlev, V. S.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[CrossRef] [PubMed]

Ye, Jun

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Jun Ye, Jin-Long Peng, R. Jason Jones, Kevin W. Holman, John L. Hall, David J. Jones, Scott A. Diddams, John Kitching, Sebastien Bize, James C. Bergquist, Leo W. Hollberg, Lennart Robertsson, and Long-Sheng Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[CrossRef]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zelevinsky, T.

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Zhang, X.-C.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
[CrossRef]

Zhou, J.

J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
[CrossRef]

Zumsteg, C.

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

H. R. Telle, G. Steinmayer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed- Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71, 1601–1603 (1997).
[CrossRef]

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992).
[CrossRef]

Electron. Lett. (1)

J. Fatome, S. Pitois, and G. Millot, “320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre,” Electron. Lett. 41 (2005)
[CrossRef]

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1 GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Zhou, R. Hiu, and N. Caponio, “Spectral linewidth and frequency chirp four-wave mixing components in optical fibers,” IEEE Photon. Technol. Lett. 6, 434–436 (1994).
[CrossRef]

Int. J. Infr. Mill. Waves (1)

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infr. Mill. Waves 15, 1–44 (1994).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode fibers,” J. Appl. Phys. 49, 5098–5106 (1978).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mon. Not. R. Astron. Soc. (1)

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[CrossRef]

Nature (6)

C.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1,” Nature 452, 610–612 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

J. C. Knight, “Photonic Crystal fibers,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and Guy Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301–306 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt.Lett. (1)

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt.Lett. 32, 3056–3058 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (1)

L. E. E. de Araujo, “Selective and efficient excitation of diatomic molecules by an ultrashort pulse train,” Phys. Rev. A 77, 033419 (2008).
[CrossRef]

Phys. Rev. Lett. (7)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation,” Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, and F. Vedel “Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping,” Phys. Rev. Lett. 99, 013001 (2007).
[CrossRef] [PubMed]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser-Cooled Mercury Ion Frequency Standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a mircoresonator frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[CrossRef] [PubMed]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, “Single-Atom Optical Clock with High Accuracy,” Phys. Rev. Lett. 97, 020801 (2006).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

S.N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

Science (5)

D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and Ye J., “United Time-Frequency Spectroscopy for Dynamics and Global Structure,” Science 306, 2063–2068 (2004).
[CrossRef] [PubMed]

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond Control and Measurement: Lightwave Electronics,” Science 317, 769–775 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).
[CrossRef] [PubMed]

S.A. Diddams, Th. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K.R. Vogel, and D.J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Other (4)

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett.86, 121114 (2005).
[CrossRef]

G. P. Agrawal, Nonlinear Optical Fiber Optics, Academic Press, New York, 2001.

H. G. Weber, R. Ludwig, S. Ferber, C. S. Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24, 4616–4627 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup used to generate an OFC by FWM in a highly nonlinear fiber (HNLF). Laser 1 (frequency f1), is an optical frequency standard and laser 2 (at f2) is phase-locked to it using a stable reference oscillator. PC: polarization controller, AM: amplitude modulator, EDFA: Erbium doped fiber amplifier, PD: photodetector; DBM: double-balanced mixer, PLL: phase-locked loop, OSA: optical spectrum analyzer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f n = n f rep + f ceo
f m = m Δ f + f Offset

Metrics