Abstract

We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber’s MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
    [CrossRef]
  2. T. Simpson, F. Doft, P. Peterson, and A. Gavrielides, "Coherent combining of spectrally broadened fiber lasers," Opt. Express 15, 11731-11740 (2007).
    [CrossRef] [PubMed]
  3. A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control," in Proc. of the SPIE: Fiber Lasers II: Technology, Systems, and Applications, 5709, 165-174 (The International Society for Optical Engineering, 2005).
  4. S. Chen, Y. Li, and K. Lu, "Branch arm filtered coherent combining of tunable fiber lasers," Opt. Express 13, 7878-7883 (2005).
    [CrossRef] [PubMed]
  5. J. Boullet, D. Sabourdy, A. D. Berthelemot, V. Kermène, D. Pagnoux, P. Roy, B. Dussardier, and W. Blanc, "Coherent combining in an Yb-doped double-core fiber laser," Opt. Lett. 30, 1962-1964 (2005).
    [CrossRef] [PubMed]
  6. J. Xu, S. Zhao, S. Zhan, R. Hou, Y. Li, L. Shi, and S. Fang, "High power high brightness laser source for material processing through incoherent beam combination," Proc. of the SPIE 6722, 67221D-1-5 (The International Society for Optical Engineering, 2007).
    [CrossRef]
  7. R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
    [CrossRef]
  8. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007).
    [CrossRef]
  9. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
    [CrossRef]
  10. D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, "Kilowatt - Level, Narrow - Linewidth Capable Fibers and Lasers," Proc. of SPIE 6453 (2007).
    [CrossRef]
  11. J. D. Hansryd, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Tech. 19, 1691-1697 (2001).
    [CrossRef]
  12. J. C. Knight, "Photonic Crystal Fibers and Fiber Lasers," J. Opt. Soc. Am. B 24,1661-1668 (2007).
    [CrossRef]
  13. P. S. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Tech. 24, 4729-4749 (2006).
    [CrossRef]
  14. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001).
    [CrossRef]
  15. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  16. G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Photonics West, Late Breaking Developments, Session 5709-2a (The International Society for Optical Engineering, 2005).
  17. Y. Anan'ev, Theoretical studies of scaling double-clad fiber lasers to high power (St. Petersburg Technical University, 2001).
  18. D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001).
    [CrossRef]
  19. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, and V. Hernandez, "Kilowatt-class single-frequency fiber sources," Proc. SPIE 5709, (2005).
    [CrossRef]
  20. A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).
  21. Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004).
    [CrossRef]
  22. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
    [CrossRef]
  23. L. Zenteno, "High-power double-clad fiber lasers," IEEE J. Lightwave Technol. 11, 1435-1446 (1993).
    [CrossRef]
  24. W. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102-114 (1986).
    [CrossRef]
  25. D. E. Gray, American Institute of Physics Handbook Third Edition (McGraw-Hill, 1972.)
  26. W. Koechner, Solid state laser engineering 6th edition (Springer, 2006).
  27. M. Y. Cheng, Y. C. Chang, and A. Galvanauskas, "High-energy and high peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005).
    [CrossRef] [PubMed]
  28. R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
    [CrossRef]
  29. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
    [CrossRef] [PubMed]
  30. E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
    [CrossRef]
  31. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, "Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression," Proc. Lasers and Electro-Optics, (Optical Society of America, 2005).
  32. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-461 (2005).
    [CrossRef] [PubMed]
  33. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
    [CrossRef] [PubMed]
  34. A. Smith, B. Do, and M. Soderlund, "Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb3+ doped fused silica," Proc. SPIE 6453, (2007).
  35. A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
    [CrossRef]
  36. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
    [CrossRef]
  37. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurkhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction limited brightness," in Proceedings of the Conference on Lasers and Electro-Optics Europe, (Optical Society of America, 2005) (Note: Used 14µm MFD fiber implying 13W/µm2 power handling capability without damage.)
    [CrossRef]
  38. See for example products by LIMO Lissotschenko MIkrooptik, Jenoptik, IPG Photonics, Newport/Spectra Physics for recent diode laser brightness capabilities
  39. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
    [CrossRef]
  40. M. H. Muendel, "Optical fiber structure for efficient use of pump power," United States Patent 5,533,163, (1996).
  41. P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
    [CrossRef]
  42. J. Buck, Fundamentals of Opitcal Fibers (Wiley, 1995.)
  43. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006).
    [CrossRef] [PubMed]
  44. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  45. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
    [CrossRef]
  46. A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
    [CrossRef]
  47. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. of Am. 66, 311-320 (1976).
    [CrossRef]
  48. R. T. Schermer, "Mode scalability in bent optical fibers," Opt. Express 15, 15674-15701 (2007).
    [CrossRef] [PubMed]
  49. M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980).
    [CrossRef] [PubMed]
  50. J. M. Fini, "Bend-compensated design of large mode area fibers," Opt. Lett. 31, 1963-1965 (2006).
    [CrossRef] [PubMed]
  51. L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
    [CrossRef]
  52. K. H. Liao, A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express 15, 13942-13948 (2007).
    [CrossRef] [PubMed]
  53. R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Opt. Comm. 123, 385-393 (1996).
    [CrossRef]
  54. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
    [CrossRef]
  55. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
    [CrossRef]
  56. J. Nilsson, "High Power Fiber Lasers and Amplifiers," SC 290, The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OSA, 2007.)
    [PubMed]
  57. A. E. Siegman, Lasers (University Science Books, 1986), Chapter 15.

2007

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
[CrossRef]

J. C. Knight, "Photonic Crystal Fibers and Fiber Lasers," J. Opt. Soc. Am. B 24,1661-1668 (2007).
[CrossRef]

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007).
[CrossRef]

T. Simpson, F. Doft, P. Peterson, and A. Gavrielides, "Coherent combining of spectrally broadened fiber lasers," Opt. Express 15, 11731-11740 (2007).
[CrossRef] [PubMed]

K. H. Liao, A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express 15, 13942-13948 (2007).
[CrossRef] [PubMed]

R. T. Schermer, "Mode scalability in bent optical fibers," Opt. Express 15, 15674-15701 (2007).
[CrossRef] [PubMed]

2006

2005

A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

M. Y. Cheng, Y. C. Chang, and A. Galvanauskas, "High-energy and high peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-461 (2005).
[CrossRef] [PubMed]

J. Boullet, D. Sabourdy, A. D. Berthelemot, V. Kermène, D. Pagnoux, P. Roy, B. Dussardier, and W. Blanc, "Coherent combining in an Yb-doped double-core fiber laser," Opt. Lett. 30, 1962-1964 (2005).
[CrossRef] [PubMed]

S. Chen, Y. Li, and K. Lu, "Branch arm filtered coherent combining of tunable fiber lasers," Opt. Express 13, 7878-7883 (2005).
[CrossRef] [PubMed]

2004

2003

A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
[CrossRef]

2001

J. D. Hansryd, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Tech. 19, 1691-1697 (2001).
[CrossRef]

D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001).
[CrossRef]

J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001).
[CrossRef]

1999

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

1996

R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Opt. Comm. 123, 385-393 (1996).
[CrossRef]

1995

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

1993

P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
[CrossRef]

L. Zenteno, "High-power double-clad fiber lasers," IEEE J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

1988

R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
[CrossRef]

1986

1980

1976

D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. of Am. 66, 311-320 (1976).
[CrossRef]

1973

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

1972

R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
[CrossRef]

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
[CrossRef] [PubMed]

Alegria, C.

Alvarado-Mendez, E.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Alvarez-Chavez, J. A.

Andrade-Lucio, J. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Augst, S. J.

Baggett, J. C.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Basurto-Pensado, M. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Beach, R. J.

R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Opt. Comm. 123, 385-393 (1996).
[CrossRef]

Beltran-Perez, G.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Berthelemot, A. D.

Blanc, W.

Blow, K. J.

R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
[CrossRef]

Boullet, J.

Brown, D.

D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001).
[CrossRef]

Caird, J. A.

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Carter, A.

A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).

Chang, G.

Chang, Y. C.

Chen, S.

Cheng, M. Y.

Chryssou, C. E.

Codemard, C. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Dimarcello, F. V.

Doft, F.

Dogarlu, A.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Dong, L.

L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
[CrossRef]

Donnelly, J. P.

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

Dupriez, P.

Dussardier, B.

Eberhardt, R.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Fan, T. Y.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980).
[CrossRef] [PubMed]

Fini, J. M.

Fleck, J. A.

Furusawa, K.

Galvanauskas, A.

Gavrielides, A.

Ghalmi, S.

Ghatak, A. K.

A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
[CrossRef]

Goyal, I. C.

A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
[CrossRef]

Hagan, D. J.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Hansryd, J. D.

J. D. Hansryd, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Tech. 19, 1691-1697 (2001).
[CrossRef]

Harris, C. T.

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

Hickey, L. M. B.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Hoffman, H. J.

D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001).
[CrossRef]

Hoffman, P. R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Honea, E. C.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Horley, R.

Hou, B.

Huang, R. K.

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
[CrossRef]

Jedrzejewski, K. P.

P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
[CrossRef]

Jeong, Y.

Jindal, R.

A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
[CrossRef]

Kashyap, R.

R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
[CrossRef]

Kermène, V.

Klingebiel, S.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Knight, J. C.

Krupke, W.

Kuzin, E. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Li, J.

L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
[CrossRef]

Li, Y.

Liao, K. H.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Limpert, J.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Liu, A.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Loftus, T. H.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Lu, K.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Marcuse, D.

D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. of Am. 66, 311-320 (1976).
[CrossRef]

Marion, J. E.

Missaggia, L. J.

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

Mohebi, M.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Monberg, E.

Monro, T. M.

Mordovanakis, A. G.

Morkel, P. R.

P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
[CrossRef]

Mourou, G.

Nees, J.

Nicholson, J. W.

Nilsson, J.

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Norsen, M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Pagnoux, D.

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Payne, D.

Payne, D. N.

Peng, X.

L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

Peschel, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Peterson, P.

Po, H.

Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004).
[CrossRef]

Ramachandran, S.

Ranka, J. K.

Rever, M.

Richardson, D. J.

Rojas-Laguna, R.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Roy, P.

Royse, R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

Russell, P. S. J.

P. S. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Tech. 24, 4729-4749 (2006).
[CrossRef]

Sabourdy, D.

Sahu, J.

Sahu, J. K.

Said, A. A.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Samson, B.

A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).

Sanchez, A.

Schermer, R. T.

Schreiber, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Shinn, M. D.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

Simpson, T.

Smith, R. G.

Soh, D. B. S.

Soileau, M. J.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Stokowski, S. E.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

Taylor, E. R.

P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
[CrossRef]

Thomas, A. M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

Torres-Cisneros, M.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Tunnermann, A.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Turner, G. W.

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

Turner, P. W.

Tynes, A. R.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
[CrossRef]

Van Stryland, E. W.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Wang, Y.

Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004).
[CrossRef]

Wanzcyk, L.

Wirth, C.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

Wisk, P.

Xia, T.

A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995).
[CrossRef]

Xu, C. Q.

Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004).
[CrossRef]

Yan, M. F.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Zenteno, L.

L. Zenteno, "High-power double-clad fiber lasers," IEEE J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972).
[CrossRef]

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Electron. Lett.

R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
[CrossRef]

IEEE J. Lightwave Technol.

L. Zenteno, "High-power double-clad fiber lasers," IEEE J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

IEEE J. of Sel. Top. Quantum Electron.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007).
[CrossRef]

IEEE J. Quantum Electron.

P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007).
[CrossRef]

D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001).
[CrossRef]

IEEE Photon. Tech. Lett.

Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004).
[CrossRef]

R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005).
[CrossRef]

J. Lightwave Tech.

P. S. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Tech. 24, 4729-4749 (2006).
[CrossRef]

J. D. Hansryd, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Tech. 19, 1691-1697 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. of Am.

D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. of Am. 66, 311-320 (1976).
[CrossRef]

J. Opt. Soc. of Am. B

L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007).
[CrossRef]

J. Phys. B

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005).
[CrossRef]

Military Aerospace Electron.

A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).

Opt. Comm.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999).
[CrossRef]

R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Opt. Comm. 123, 385-393 (1996).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995).
[CrossRef] [PubMed]

Proc. SPIE

A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003).
[CrossRef]

Other

J. Buck, Fundamentals of Opitcal Fibers (Wiley, 1995.)

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, "Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression," Proc. Lasers and Electro-Optics, (Optical Society of America, 2005).

A. Smith, B. Do, and M. Soderlund, "Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb3+ doped fused silica," Proc. SPIE 6453, (2007).

M. H. Muendel, "Optical fiber structure for efficient use of pump power," United States Patent 5,533,163, (1996).

V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurkhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction limited brightness," in Proceedings of the Conference on Lasers and Electro-Optics Europe, (Optical Society of America, 2005) (Note: Used 14µm MFD fiber implying 13W/µm2 power handling capability without damage.)
[CrossRef]

See for example products by LIMO Lissotschenko MIkrooptik, Jenoptik, IPG Photonics, Newport/Spectra Physics for recent diode laser brightness capabilities

J. Xu, S. Zhao, S. Zhan, R. Hou, Y. Li, L. Shi, and S. Fang, "High power high brightness laser source for material processing through incoherent beam combination," Proc. of the SPIE 6722, 67221D-1-5 (The International Society for Optical Engineering, 2007).
[CrossRef]

D. E. Gray, American Institute of Physics Handbook Third Edition (McGraw-Hill, 1972.)

W. Koechner, Solid state laser engineering 6th edition (Springer, 2006).

A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control," in Proc. of the SPIE: Fiber Lasers II: Technology, Systems, and Applications, 5709, 165-174 (The International Society for Optical Engineering, 2005).

D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, "Kilowatt - Level, Narrow - Linewidth Capable Fibers and Lasers," Proc. of SPIE 6453 (2007).
[CrossRef]

G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Photonics West, Late Breaking Developments, Session 5709-2a (The International Society for Optical Engineering, 2005).

Y. Anan'ev, Theoretical studies of scaling double-clad fiber lasers to high power (St. Petersburg Technical University, 2001).

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, and V. Hernandez, "Kilowatt-class single-frequency fiber sources," Proc. SPIE 5709, (2005).
[CrossRef]

J. Nilsson, "High Power Fiber Lasers and Amplifiers," SC 290, The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OSA, 2007.)
[PubMed]

A. E. Siegman, Lasers (University Science Books, 1986), Chapter 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Contour plot of the minimum of six of the seven physical power limits (power units are in kW) discussed in section II (SBS has been ignored in this case) using the parameters in Table 1 and allowing the core diameter and fiber length to vary. Only three limits come into play in this plot, the pump power limit in the blue (lower left section of plot), the SRS limit in green (upper left section of plot) and the thermal lens limit in red (right side of graph).

Fig. 2.
Fig. 2.

Contour plot of the minimum of six of the seven physical power limits (power units are in kW) discussed in section II (SBS has been ignored in this case) using the parameters in Table 1 but increasing the pump brightness B pump by 5X and allowing the core diameter and fiber length to vary. Now four limits come into play in this plot, the pump power limit in the blue (lower left section of plot), the SRS limit in green (upper left section of plot), an optical damage limited region in gray (middle left setion of the plot) and the thermal lens limit in red (right side of graph).

Fig. 3.
Fig. 3.

Contour plot of the minimum of six of the seven physical power limits (power units are in kW) discussed in section II (SRS has been ignored in this case) using the parameters in Table 1 and allowing the core diameter and fiber length to vary. Only three limits come into play in this plot, the pump power limit in the blue (lower left section of plot), the SBS limit in yellow (upper left section of plot) and the thermal lens limit in red (right side of graph).

Fig. 4.
Fig. 4.

Product of the spacing between the modal effective indices and the modal area (Eq. 34) vs. the number of l=0 modes supported by the fiber. The dots represent the mode count at which the respective LP11 modes cut-off.

Fig. 5(a).
Fig. 5(a).

Plot of effective mode area as a function for core diameter for varying bend radii.

Fig. 5(b).
Fig. 5(b).

Plot of effective core diameter vs. actual core diameter for a straight fiber and the same fiber bent at varying radii.

Fig. 6.
Fig. 6.

Cladding pumped fiber amplifier

Fig. 7.
Fig. 7.

Lasing efficiency for 4 m Yb3+ fiber as a function of the lasing and pump wavelengths.

Fig. 8.
Fig. 8.

Yb:Silica emission and absorption cross-sections

Fig. 9.
Fig. 9.

Lasing efficiency as a function of laser wavelength when pumped at 977 nm

Fig. 10.
Fig. 10.

Lasing efficiency versus fiber length.

Fig. 11.
Fig. 11.

Quantum defect at peak lasing efficiency.

Tables (3)

Tables Icon

Table 1: List of parameters, symbols used in text and values used in calculation as well as units and references. The first 8 entries are physical constants of fused silica and are unlikely to change. The lower 7 entries reflect current state of the art in technology or assumptions we have made and may evolve with time.

Tables Icon

Table 2: Comparison of most commonly consider fiber index profiles

Tables Icon

Table 3. Energetics analysis of the self-consistency of the assumptions in sections II and III.

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

P heat L = 4 π · R m 1 a 2 2 b 2 ,
P out rupture = η laser η heat · 4 π · R m 1 a 2 2 b 2 . L ,
P out melting = η laser η heat · 4 · π · k · ( T m T c ) 1 + 2 k b · h + 2 ln ( b a ) . L ,
P out lens = η laser η heat · π · k · λ 2 2 d n d T · a 2 . L ,
P Out SRS 16 · A eff g R · L eff ,
A eff = Γ 2 · π · a 2 = π · r mode field 2 ,
L eff = 1 g ( e g · L 1 ) .
P Out SRS 16 π · a 2 g R L · Γ 2 · ln ( G ) .
P Out SBS 17 · A eff g B ( Δ v ) · L eff ,
P Out SBS 17 π · a 2 g B ( Δ v ) · L · Γ 2 · ln ( G ) .
P Out damage = Γ 2 · I damage · π · a 2 ,
P out pump = η laser · I pump · ( π · b 2 ) · ( π · N A 2 ) ,
α clad = α core · a 2 b 2 ,
b = a α core · L A .
P out pump = η laser · I pump · π 2 · N A 2 · α core A · L · a 2 .
L = 4 a 2 2 · η heat · dn dT · Γ 2 · ln ( G ) η laser · k · λ 2 · g R .
P SRS Lens = 4 π η laser · k · λ 2 · Γ 2 · ln ( G ) 2 · η heat · dn dT · g R .
a opt = 4 k · λ 2 · A 2 · η heat · dn dT · π · N A 2 · α core · I pump .
P Pump Lens = η laser · L · π · NA · λ k · π · α core · I pump 2 · A · η heat · dn dT .
L opt = 4 · Γ NA ln ( G ) · A g R · η laser · I pump · α core .
P SRS Pump = 4 π · a 2 · Γ · NA η laser · I pump · π · α core g R · α laser .
L max = 16 · ln ( G ) g R · I damage .
a damage SRS lens = 2 · η laser · k · λ 2 · ln ( G ) η heat · dn dT · Γ 2 · g R · I damage 2 4 .
L min pump damage = Γ 2 · I damage · A η laser · I pump · π · NA 2 · α core .
L min damage Lens = 2 · η heat · dn dT · Γ 2 · I damage η laser · k · λ 2 · a 4 .
L = a 2 η heat · dn dT · Γ 2 · 34 · ln ( G ) η laser · k · λ 2 · g B ( Δ v ) .
P SBS Lens = π · λ η laser · k · Γ 2 · 17 · ln ( G ) 2 · η heat · dn dT · g B ( Δ v ) .
L min = 17 · Γ 2 · ln ( G ) · A g B ( Δ v ) · η laser · I pump · π · N A 2 · α core .
d 2 ψ d γ 2 + 1 γ d ψ d γ + { v 2 [ b ( γ ) b eff ] l 2 γ 2 } ψ = 0 ,
b ( γ ) = n 2 ( γ ) n clad 2 n max 2 n min 2 ,
b eff = n eff 2 n clad 2 n max 2 n min 2 ,
v 2 = a 2 k 0 2 ( n max 2 n min 2 ) .
a 2 k 0 2 ( n eff , 1 2 n eff , 2 2 ) = v 2 ( b eff , 1 b eff , 2 ) .
( n eff , 1 2 n eff , 2 2 ) · A eff λ 0 2 ,
( n eff , 1 2 n eff , 2 2 ) · A eff λ 0 2 0.338
δ b ( γ , θ ) = n clad 2 n max 2 n min 2 a R γ cos θ ,
R ex = P pump γ p ( 1 e α clad L ) .
α clad = [ ( n 0 n 2 ) · σ abs ( λ p ) n 2 · σ em ( λ p ) ] · ( a b ) 2 .
R DEx = P in γ laser ( 1 e α L L ) n 2 τ 0 π · a 2 · L .
α L = n 2 · σ em ( λ ) ( n 0 n 2 ) · σ abs ( λ ) .
( A B C D ) = ( cos ( γ z ) sin ( γ z ) ( n 0 γ ) sin ( γ z ) · ( n 0 γ ) cos ( γ z ) ) ,
γ = n 2 n 0 ,
n 2 = dn dT P Th 2 k .
n ( r ) = n 0 1 2 n 2 r 2 .
1 q = n 0 R j λ 0 π ω 2 .
q = A q + B C q + D .
ω 2 = λ 0 π 2 k n 0 d n d T P Th , R = .
P T h = ( 2 π 2 n 0 ) k λ 0 2 d n d T ω 4 .
P T h ( 1 2 ) k λ 0 2 d n d T a 4 .
P out lens = η laser η heat · π · k · λ 2 2 d n d T · a 2 · L ,

Metrics