Abstract

We report on visible light emission from Si-nanocrystal based optically active microdisk resonators. The room temperature photoluminescence (PL) from single microdisks shows the characteristic modal structure of whispering-gallery modes. The emission is both TE and TM-polarized in 300 nm thick microdisks, while thinner ones (135 nm) support only TE-like modes. Thinner disks have the advantage to filter out higher order radial mode families, allowing for measuring only the most intense first order modal structure. We reveal subnanometer linewidths and corresponding quality factors as high as 2800, limited by the spectral resolution of the experimental setup. Moreover, we observe a modification of mode linewidth by a factor 13 as a function of pump power. The origin of this effect is attributed to an excited carrier absorption loss mechanism.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Rayleigh, "Further applications of Bessel�??s functions of high order to the whispering gallery and allied problems," Philos. Mag. 27, 100 (1914).
  2. K.J. Vahala, "Optical Microcavities," Nature (London) 424, 839 (2003).
    [CrossRef] [PubMed]
  3. See, e.g. the review by V. S. Ilchenko and A. B. Matsko, "Optical Resonators With Whispering-Gallery Modes-Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 76 (2006).
  4. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
    [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  6. P. Michler et al., "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184 (2000).
    [CrossRef]
  7. Zh. Zhang et al., "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
    [CrossRef]
  8. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
    [CrossRef]
  9. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
    [CrossRef] [PubMed]
  10. L. Pavesi, S. Gaponenko, and L. Dal Negro, eds. Towards the First Silicon Laser, NATO Science Series (Kluwer, Dordrecht, 2003).
    [CrossRef]
  11. A. S. Liu et al., "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature (London) 427, 615 (2004).
    [CrossRef] [PubMed]
  12. H. Rong et al., "An all-silicon Raman laser," Nature (London) 433, 292 (2005).
    [CrossRef] [PubMed]
  13. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
    [CrossRef] [PubMed]
  14. R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
    [CrossRef]
  15. D. S. Gardner and M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804 (2005).
    [CrossRef]
  16. L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).
  17. The PL spectra collected vertically to the disk plane show only the characteristic nc-Si emission band. The absence of WGM lines implies a significantly low surface scattering and confirms the high surface quality of microdisks.
  18. A 5 nm variation in the disk radius (roughly 0.1%) results to a spectral shift of the resonant features by 2 nm.
  19. A. Farjadpour et al., "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972 (2006).
    [CrossRef] [PubMed]
  20. D. Navarro-Urrios et al., "Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 �??m," Appl. Phys. Lett. 92, 051101 (2008).
    [CrossRef]
  21. R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
    [CrossRef]
  22. The quality of fit to ellipsometric data saturates down to values |2 ¡« 0.1 for loss coefficients smaller than �?�0 =30 cm-1.
  23. S. Reitzenstein et al., "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
    [CrossRef]

2008

D. Navarro-Urrios et al., "Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 �??m," Appl. Phys. Lett. 92, 051101 (2008).
[CrossRef]

2007

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Zh. Zhang et al., "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

2006

See, e.g. the review by V. S. Ilchenko and A. B. Matsko, "Optical Resonators With Whispering-Gallery Modes-Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 76 (2006).

S. Reitzenstein et al., "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

A. Farjadpour et al., "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972 (2006).
[CrossRef] [PubMed]

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

2005

D. S. Gardner and M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804 (2005).
[CrossRef]

H. Rong et al., "An all-silicon Raman laser," Nature (London) 433, 292 (2005).
[CrossRef] [PubMed]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

2004

A. S. Liu et al., "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature (London) 427, 615 (2004).
[CrossRef] [PubMed]

2003

K.J. Vahala, "Optical Microcavities," Nature (London) 424, 839 (2003).
[CrossRef] [PubMed]

2000

P. Michler et al., "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

1914

L. Rayleigh, "Further applications of Bessel�??s functions of high order to the whispering gallery and allied problems," Philos. Mag. 27, 100 (1914).

Armani, A. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Brongersma, M. L.

D. S. Gardner and M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804 (2005).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

Daldosso, N.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Elliman, R. G.

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Farjadpour, A.

Ferraioli, L.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Forcales, M.

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

Gardner, D. S.

D. S. Gardner and M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804 (2005).
[CrossRef]

Gösele, U.

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

Ilchenko, V. S.

See, e.g. the review by V. S. Ilchenko and A. B. Matsko, "Optical Resonators With Whispering-Gallery Modes-Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 76 (2006).

Kompocholis, C.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Krishna, S.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Lipson, M.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

Liu, A. S.

A. S. Liu et al., "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature (London) 427, 615 (2004).
[CrossRef] [PubMed]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Matsko, A. B.

See, e.g. the review by V. S. Ilchenko and A. B. Matsko, "Optical Resonators With Whispering-Gallery Modes-Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 76 (2006).

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Michler, P.

P. Michler et al., "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

Milenin, A. P.

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Navarro-Urrios, D.

D. Navarro-Urrios et al., "Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 �??m," Appl. Phys. Lett. 92, 051101 (2008).
[CrossRef]

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Painter, O.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Pavesi, L.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

Pucker, G.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Rayleigh, L.

L. Rayleigh, "Further applications of Bessel�??s functions of high order to the whispering gallery and allied problems," Philos. Mag. 27, 100 (1914).

Reitzenstein, S.

S. Reitzenstein et al., "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Rong, H.

H. Rong et al., "An all-silicon Raman laser," Nature (London) 433, 292 (2005).
[CrossRef] [PubMed]

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

Seo, S.-Y.

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Smith, N. J.

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Srinivasan, K.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Stintz, A.

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Vahala, K.J.

K.J. Vahala, "Optical Microcavities," Nature (London) 424, 839 (2003).
[CrossRef] [PubMed]

Wang, M.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Wilkinson, A. R.

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

Zacharias, M.

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

Zhang, R.-J.

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

Zhang, Zh.

Zh. Zhang et al., "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

Appl. Phys. Lett.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

P. Michler et al., "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

Zh. Zhang et al., "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007).
[CrossRef]

R.-J. Zhang, S.-Y. Seo, A. P. Milenin, M. Zacharias, and U. Gösele, "Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals," Appl. Phys. Lett. 88, 153120 (2006).
[CrossRef]

D. Navarro-Urrios et al., "Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 �??m," Appl. Phys. Lett. 92, 051101 (2008).
[CrossRef]

S. Reitzenstein et al., "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

See, e.g. the review by V. S. Ilchenko and A. B. Matsko, "Optical Resonators With Whispering-Gallery Modes-Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 76 (2006).

J. Nanomat.

L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of Silicon Nanocrystals in Silicon Oxide," J. Nanomat. 2007, 43491 (2007).

Nature (London)

A. S. Liu et al., "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature (London) 427, 615 (2004).
[CrossRef] [PubMed]

H. Rong et al., "An all-silicon Raman laser," Nature (London) 433, 292 (2005).
[CrossRef] [PubMed]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325 (2005).
[CrossRef] [PubMed]

K.J. Vahala, "Optical Microcavities," Nature (London) 424, 839 (2003).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature (London) 408, 440 (2000).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. Phys. Res. B

R. G. Elliman, M. Forcales, A. R. Wilkinson, and N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Meth. Phys. Res. B 257, 11 (2007).
[CrossRef]

Opt. Lett.

Opt. Mater.

D. S. Gardner and M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804 (2005).
[CrossRef]

Philos. Mag.

L. Rayleigh, "Further applications of Bessel�??s functions of high order to the whispering gallery and allied problems," Philos. Mag. 27, 100 (1914).

Phys. Rev. B

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Other

L. Pavesi, S. Gaponenko, and L. Dal Negro, eds. Towards the First Silicon Laser, NATO Science Series (Kluwer, Dordrecht, 2003).
[CrossRef]

The quality of fit to ellipsometric data saturates down to values |2 ¡« 0.1 for loss coefficients smaller than �?�0 =30 cm-1.

The PL spectra collected vertically to the disk plane show only the characteristic nc-Si emission band. The absence of WGM lines implies a significantly low surface scattering and confirms the high surface quality of microdisks.

A 5 nm variation in the disk radius (roughly 0.1%) results to a spectral shift of the resonant features by 2 nm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(color online) The micro-PL setup; an individual microdisk is excited vertically through a focused pumped beam, while the characteristic WGMemission is collected under small solid angle in the plane of the disks.

Fig. 2.
Fig. 2.

(color online) Measured TE-polarized WGM spectrum of an 8µm diameter microdisk is plotted together with the simulated peak positions for the first radial mode family (◦). The predicted second mode family (★) is however absent in the measured spectrum because of being much less intense. (Inset) The bright spot in the photograph is the direct image of the visible PL emission of nc-Si from a single disk resonator.

Fig. 3.
Fig. 3.

(color online) Typical TE-polarized WGM emission spectra from 8µm diameter (a) thin, d=135 nm and (b) thick, d=300 nm disk resonators. The corresponding insets show (a) the absence and (b) the presence of resonant whispering-gallery features for TM-polarization. Scanning electron microscopy images are shown respectively in panels (c) and (d). Note, that though the support pedestals have different top radii, in both cases they are small enough to not disturb the WGM characteristics.

Fig. 4.
Fig. 4.

(color online) The measured Q-factors at increasing pump power are plotted at three different wavelengths, reporting an order of magnitude variation between two extreme pump powers. The error bars reflect the accuracy limit of measured linewidths. The inset shows the WGM mode at λ=849 nm at the lowest and at a high pump powers.

Fig. 5.
Fig. 5.

(color online) The non-linear fit of the measured inverse Qexp at λ=754 nm (m=39) using Eq. 2. The inset shows the corresponding power-dependent absorption coefficient α=α 0+α*(P).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q 1 = Q rad 1 + Q mat 1 + Q ssc 1 + Q sa 1 ,
Q exp 1 ( P ) = ( Q rad , ss , sa 1 + λ α 0 2 π n eff ) + λ α * ( P ) 2 π n eff .

Metrics