Abstract

We demonstrated a reflective-type liquid crystal (LC) intensity modulator in 1550 nm telecomm band. An effective way to compensate the residual phase of a LC cell is proposed. With the adjustment of a true zero-order quarter wave plate and enhanced by total internal reflection induced birefringence, over 53 dB dynamic range was achieved, which is much desired for some high-end optical communication, infrared scene projection applications. In addition, the driving voltages were decreased and adjustable. Mechanical and spectral tolerance measurements show that our LC modulator is quite stable. Further applications of our experimental setup were discussed including bio-sensors and high speed modulators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, England, 2006), Chap. 12.
    [CrossRef]
  2. R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
    [CrossRef]
  3. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
    [CrossRef]
  4. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
    [CrossRef] [PubMed]
  5. C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
    [CrossRef]
  6. X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
    [CrossRef]
  7. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
    [CrossRef]
  8. J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
    [CrossRef]
  9. S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
    [CrossRef]
  10. C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge U., Cambridge, UK, 1999), Chap. 1.

2008

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

2007

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

2006

C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
[CrossRef]

2005

J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

2004

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

2003

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

1991

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Artal, P.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Ayala, D. B.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Bos, P. J.

C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
[CrossRef]

Chen, C.

C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
[CrossRef]

Crossland, W. A.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Day, S. E.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Du, F.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Fan, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Feng, W.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Fernández, F. A.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Glushchenko, A.

J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

Gregory, D. A.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Huang, T.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

James, R.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Jutamulia, S.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Kim, J.

C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
[CrossRef]

Komarcevic, M.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Liang, X.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Lin, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Lindacher, J. M.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Lindmayer, J.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Lu, Y. Q.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Manzanera, S.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Mao, C.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Prieto, P. M.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Ren, H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Seiderman, W. M.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Storti, G. M.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Wang, H. Y.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

West, J. L.

J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

Wu, J.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Wu, J. R.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Wu, K.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Wu, S. T.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Wu, Y. H.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Xu, M.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

Appl. Phys. Lett.

J. L. West, G. Zhang, and A. Glushchenko, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

J. Appl. Phys.

C. Chen, P. J. Bos, J. Kim, Q. L, and J. E. Anderson, "Improved liquid crystals for vertical alignment applications," J. Appl. Phys. 99, 123523 (2006)
[CrossRef]

J. Opt. Soc. Am.

R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2-D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. 24, 2464-2473 (2007).
[CrossRef]

Jpn. J. App. Phys.

X. Liang, Y. Q. Lu, Y. H. Wu, F. Du, H. Y. Wang, and S. T. Wu, "Dual-frequency addressed variable optical attenuator with submillisecond response time," Jpn. J. App. Phys. 44, 1292-1295 (2005).
[CrossRef]

Nano Lett.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008)
[CrossRef]

Opt. Commun.

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007). A. G. Maksimochkin, S. V. Pasechnik, V. A. Tsvetkov, D. A. Yakovlev, G. I. Maksimochkin, and V. G. Chigrinov, "Electrically controlled switching of light beams in the plane of liquid crystal layer," Opt. Commun. 270, 273-279 (2007).
[CrossRef] [PubMed]

Opt. Eng.

S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, "Infrared signal processing using a liquid crystal television," Opt. Eng. 30, 178-182 (1991).
[CrossRef]

Opt. Express

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Express 12, 6377-6384 (2004).
[CrossRef]

Proc. SPIE

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, "Liquid-crystal applications in optical telecommunication," Proc. SPIE 5003,121-129 (2003).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge U., Cambridge, UK, 1999), Chap. 1.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, England, 2006), Chap. 12.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Phase retardation of a LC cell showing residual phase effect.

Fig. 2.
Fig. 2.

A LC based light intensity modulator design with ™ optical simulation software.

Fig. 3.
Fig. 3.

Voltage-dependent transmittance of a LC based intensity modulator at different QWP rotation angles, where the top curve is for no-QWP and the others from top to bottom corresponds to -1°, -2°, -3° and -4° QWP rotation angles, respectively.

Fig. 4.
Fig. 4.

QWP angular tolerance curves corresponding to different driving voltages. (11.2 Vrms, 8.3 Vrms, 6.5 Vrms, respectively).

Fig. 5.
Fig. 5.

Spectral response at telecomm C-band of a LC based intensity modulator. Different curves correspond to different attenuations states.

Fig. 6.
Fig. 6.

Correlation of theoretical and experimental results, with and without consideration of total internal reflection induced birefringence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ φ s = 2 tan 1 sin 2 θ 1 n 2 cos θ φ p = 2 tan 1 sin 2 θ 1 n 2 cos θ n 2

Metrics