Abstract

We introduce and present experimental evaluations of loss and nonlinear optical response in a waveguide and an optical resonator, both implemented with a silicon nitride/silicon dioxide material platform prepared by plasma-enhanced chemical vapor deposition with dual frequency reactors that significantly reduce the stress and the consequent loss of the devices. We measure a relatively small loss of ~4dB/cm in the waveguides. The fabricated ring resonators in add-drop and all-pass arrangements demonstrate quality factors of Q=12,900 and 35,600. The resonators are used to measure both the thermal and ultrafast Kerr nonlinearities. The measured thermal nonlinearity is larger than expected, which is attributed to slower heat dissipation in the plasma-deposited silicon dioxide film. The n 2 for silicon nitride that is unknown in the literature is measured, for the first time, as 2.4×10-15cm2/W, which is 10 times larger than that for silicon dioxide.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  3. K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
    [CrossRef] [PubMed]
  4. K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
    [CrossRef]
  5. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  6. K. Ikeda, Y. Shen and Y. Fainman, "Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices," Opt. Express 15, 17761-17771 (2007).
    [CrossRef] [PubMed]
  7. Q. Lin, O. J. Painter and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007).
    [CrossRef] [PubMed]
  8. W. Stutius and W. Streifer, "Silicon nitride films on silicon for optical waveguides," Appl. Opt. 16, 3218-3222 (1977).
    [CrossRef] [PubMed]
  9. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, "Low loss Si3N4-SiO2 optical waveguides on Si," Appl. Opt. 26, 2621-2624, (1987).
    [CrossRef] [PubMed]
  10. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
    [CrossRef]
  11. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
    [CrossRef]
  12. E. P. van de Ven, I-W. Connick, and A. S. Harrus, "Advantages of dual frequency PECVD for deposition of ILD and passivation films," Proc. IEEE VLSI Multilevel Interconnection Conference (VMIC), 194-201 (1990)
    [CrossRef]
  13. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  15. C. A. Carter and J. M. Harris, "Comparison of models describing the thermal lens effect," Appl. Opt. 23, 476-481 (1984).
    [CrossRef] [PubMed]
  16. W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
    [CrossRef]
  17. L. F. Stokes, M. Chodorow and H. J. Shaw, "All-single-mode fiber resonator," Opt. Lett. 7, 288- 290 (1982)
    [CrossRef] [PubMed]
  18. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]

2007

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

K. Ikeda, Y. Shen and Y. Fainman, "Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices," Opt. Express 15, 17761-17771 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007).
[CrossRef] [PubMed]

2006

K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006).
[CrossRef] [PubMed]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

2005

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

2003

W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
[CrossRef]

1996

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1987

1984

1982

1977

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Bellutti, P.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Boskovic, A.

Carter, C. A.

Chernikov, S. V.

Chodorow, M.

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Fainman, Y.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Georgiev, Y. M.

W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
[CrossRef]

Girardini, M.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Gruner-Nielsen, L.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Harris, J. M.

Henry, C. H.

Henschel, W.

W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
[CrossRef]

Ikeda, K.

Ippen, E. P.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Katz, L. E.

Kazarinov, R. F.

Kira, G.

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

Kurz, H.

W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
[CrossRef]

Lee, H. J.

Levring, O. A.

Lin, Q.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

Orlowsky, K. J.

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Shaw, H. J.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Shen, Y.

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

Smith, H. I.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Stokes, L. F.

Streifer, W.

Stutius, W.

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005).
[CrossRef] [PubMed]

Taylor, J. R.

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Watts, M. R.

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Ligthtwave Technol.

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Solid-State Electron.

K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Other

E. P. van de Ven, I-W. Connick, and A. S. Harrus, "Advantages of dual frequency PECVD for deposition of ILD and passivation films," Proc. IEEE VLSI Multilevel Interconnection Conference (VMIC), 194-201 (1990)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SiN/SiO2 waveguide: (a) and (b) SEM micrographs of the SiN/SiO2 waveguides before and after the SiO2 upper-cladding deposition, respectively. (c) Measured data and curve fit of propagation loss vs. waveguide length.

Fig. 2
Fig. 2

Ring resonator with the SiN/SiO2 waveguide (r=20µm, g=700nm): (a) SEM micrograph of the ring. (b) and (c) Transmission spectra.

Fig. 3
Fig. 3

Nonlinear response of the SiN/SiO2 ring resonator: (a) and (b) Nonlinear responses with CW light, (c) Probe signal modulation by pump modulated at 100kHz.

Fig. 4
Fig. 4

Time response of Δn calculated with Eq. (2)

Fig. 5
Fig. 5

All-pass type ring resonator with the SiN/SiO2 waveguide (r=20µm, g=600nm): (a) transmission spectrum (b) Probe signal modulations by pump modulated at 1GHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = κ · exp ( α L 2 ) 2 ( 1 1 κ exp ( α L 2 ) ) 2 = 7.2 .
d Δ n dt = Δ n a Δ n t c .
Δ n a = ( dn dT ) · I · α 2 · ρ · C p ,
t c = R m 2 · ρ · C p 4 · k .
M = ( 1 κ ) · exp ( α L ) ( 1 κ exp ( α L 2 ) ) 2 ,

Metrics