Abstract

A one-step introduction of functional defects into a photonic crystal is demonstrated. By using a multi-beam phase-controlled holographic lithography, line-defects in a Bragg structure and embedded waveguides in a two-dimensional photonic crystal are fabricated. Intrinsic defect introduction into a 3-dimensional photonic crystal is also proposed. This technique gives rise to a substantial reduction of the fabrication complexity and a significant improvement on the accuracy of the functional defects in photonic crystals.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
    [CrossRef]
  5. R. G. Hunsperger, Integrated Optics (Springer-Verlag Berlin, Heidelberg, Germany, 2002).
  6. P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
    [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  8. L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
    [CrossRef]
  9. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, "Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques," Opt. Express 13, 5331-5337 (2005).
    [CrossRef] [PubMed]
  10. J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
    [CrossRef]
  11. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  12. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  13. J. W. Rinne and P. Wiltzius, "Design of holographic structures using genetic algorithms," Opt. Express 14, 9909-9916 (2006).
    [CrossRef] [PubMed]
  14. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
    [CrossRef]
  15. X. S. Xie, M. Li, J. Guo, B. Liang, Z. X. Wang, A. Sinistkii, Y. Xiang, and J. Y. Zhou, "Phase manipulated multi-beam holographic lithography for tunable optical lattices," Opt. Express 15, 7032-7037 (2007).
    [CrossRef] [PubMed]
  16. S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
    [CrossRef] [PubMed]
  17. G. Lee, S. H. Song, and C. Oh, P. Kim, "Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings," Opt. Lett. 29, 2539-2541 (2004).
    [CrossRef] [PubMed]
  18. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, "Two-dimensional photonic quasicrystals by single beam computer-generated holography," Opt. Express 16, 5164-5170 (2008).
    [CrossRef] [PubMed]
  19. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts 1996).
  20. L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of a microfiber bundle by interference of three noncoplanar beams," Opt. Lett. 26, 1858-1860 (2001)
    [CrossRef]
  21. X. Zhu, Y. Xu, and S. Yang, "Distortion of 3D SU8 Photonic Structures Fabricated by Four-beam Holographic Lithography with Umbrella Configuration," Opt. Express 15, 16546-16560 (2007).
    [CrossRef] [PubMed]
  22. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  23. L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
    [CrossRef]
  24. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
    [CrossRef]
  25. A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
    [CrossRef]
  26. M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
    [CrossRef]

2008 (1)

2007 (2)

2006 (4)

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

J. W. Rinne and P. Wiltzius, "Design of holographic structures using genetic algorithms," Opt. Express 14, 9909-9916 (2006).
[CrossRef] [PubMed]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
[CrossRef]

2005 (3)

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, "Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques," Opt. Express 13, 5331-5337 (2005).
[CrossRef] [PubMed]

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

2004 (4)

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

G. Lee, S. H. Song, and C. Oh, P. Kim, "Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings," Opt. Lett. 29, 2539-2541 (2004).
[CrossRef] [PubMed]

2003 (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (4)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Abbate, G.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Blanford, C. F.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

Braun, P. V.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
[CrossRef]

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Cai, L. Z.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Chen, C. T.

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Cirelli, R.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Denning, R. G.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Deubel, M.

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

García-Santamaría, F.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
[CrossRef]

Gu, M.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

Guo, J.

Hakansson, A.

L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Heitzman, C. E.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Hsu, C. C.

Jeon, S.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

John, S.

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

Juodkazis, S.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Kaso, A.

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

Kenis, P. J. A.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Kim, P.

Kivshar, Y.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Lai, N. D.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Lee, G.

Li, M.

Liang, B.

Liang, W. P.

Lin, J. H.

Lopez-Zano´, D.

L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Marino, A.

Matsuo, S.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Matthews, A.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

Misawa, H.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Mizeikis, V.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Motzkus, M.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Oh, C.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Park, J.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Piccirillo, B.

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Rinne, J. W.

Rinne, S. A.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
[CrossRef]

Roche, O. M.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

Rogers, J. A.

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Sanchis, L.

L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Santamato, E.

Scrimgeour, J.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

Sharp, D. N.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Sinistkii, A.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Song, S. H.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Tkachenko, V.

Turberfield, A. J.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

Wang, G. P.

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wang, X.-H.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

Wang, Y. R.

Wang, Z. X.

Wegener, M.

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Wiltzius, P.

Wong, K. S.

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wu, L.

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Xiang, Y.

Xie, X. S.

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, S.

X. Zhu, Y. Xu, and S. Yang, "Distortion of 3D SU8 Photonic Structures Fabricated by Four-beam Holographic Lithography with Umbrella Configuration," Opt. Express 15, 16546-16560 (2007).
[CrossRef] [PubMed]

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Yang, X. L.

Zhong, Y.

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Zhou, J. Y.

Zhu, X.

Zito, G.

Adv. Mater. (2)

P. V. Braun, S. A. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: state of the art," Adv. Mater. 18, 2665-2673 (2006).
[CrossRef]

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, "Three-dimensional optical lithography for photonic microstructures," Adv. Mater. 18, 1557-1560 (2006).
[CrossRef]

Appl. Phys. B (1)

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, "Band-gap properties of two-dimensional low-index photonic crystals," Appl. Phys. B 81, 189-192 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

L. Sanchis, A. Hakansson, D. Lopez-Zanon, J. Bravo-Abad, and J. Sanchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

L. Wu, Y. Zhong, C. T. Chen, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Nature (3)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

New J. Phys. (1)

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

S. Jeon, J. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (1)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Other (2)

M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts 1996).

R. G. Hunsperger, Integrated Optics (Springer-Verlag Berlin, Heidelberg, Germany, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for creating phase-controlled holographic intensity pattern. The beamlets mask setup in front of the LC-SLM for (b) 1-D and (c) 2-D interference patterns. The expanded laser beam is divided into multiple beamlets that pass through or are blocked off the pixel regions 1–9. The arrows represent the polarization of the beams that pass through the mask.

Fig. 2.
Fig. 2.

(a) The GA numerical simulation of the light intensity distribution in SU8 for a line defect in the Bragg structure generated by the beamlets mask in Fig. 1(b). One possible combination of the phases is π, 0, 0, π, 0, respectively, for the beamlets 1, 2, 3, 6 and 7. (b) The CCD-recorded intensity patterns in air for the structure. (c) SEM showing the top view of the structure after exposure of the light intensity pattern with a SU8 material by a lens of f=100 mm. Scale bars: 10 µm

Fig. 3.
Fig. 3.

(a) The simulated light intensity distribution in SU8 for a line defect in a 2-D triangle PhCs by the beamlets mask in Fig. 1(c). One possible combination of the phases is π, 0, 0, π, 0, 0, respectively, for the beamlets 1, 2, 3, 6, 7 and 9. (b) The CCD-recorded intensity patterns in air of the structure. (c) SEM showing the oblique view of the structure after exposure of the intensity pattern by a lens of f=100 mm. Scale bars: 10 µm.

Fig. 4.
Fig. 4.

(a) The beamlets mask setup for a line defect of every 8 periods in a 2-D square PhC. The focal length of the focusing lens used in simulation equals to 16 unit pixel of the LC-SLM. The phases of beams 1~10 are set to 0, 0.5π, 1.35π, π, 0.4π, 0, 0, 0.5π, 1.35π, π, respectively. The phase of beams 11~20 are the same as beams 1~10. The arrow represent the polarizations of the beams. (b) The simulated light intensity distribution in SU8.

Fig. 5.
Fig. 5.

(a) The beamlets mask setup in front of the LC-SLM for an embedded plane defect in a 3-D Slanted Pore PhC. The focal length of the focusing lens used in simulation equals to 31 unit pixel of the LC-SLM. The phases of beams 1~12 are set to π, 0, 0, π, 0, 0, 0, 1.4π, 0.2π, 0, 0.4π, 1.2π, respectively. The two arrows represent the polarizations of the light beams 1~6 and 7~12 that pass through the mask. (b) The simulation and experiment result of light intensity distribution of the embedded plane defect. The perspective view of the 3-D structure in SU8 is shown at the left, its selected 2-D planes are shown in the middle, which can be viewed as a diamond like structure, and experimental CCD-recorded intensity patterns in air of the corresponding planes are shown at the right.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r , t ) = < i n E i 2 > + i < j n 2 E i · E j cos ( ( k i k j ) · r + ( φ i φ j ) ) ,

Metrics