Abstract

We present an electrically pumped single-photon emitter in the visible spectral range, working up to 80 K, realized using a self-assembled single InP quantum dot. We confirm that the electroluminescense is emitted from a single quantum dot by performing second-order autocorrelation measurements and show that the deviation from perfect single-photon emission is entirely related to detector limitations and background signal. Emission from both neutral and charged exciton complexes was observed with their relative intensites depending on the injection current and temperature.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single CdSe quantum dots for high-bandwidth single-photon generation

Thomas Aichele, Valéry Zwiller, Oliver Benson, Ilya Akimov, and Fritz Henneberger
J. Opt. Soc. Am. B 20(10) 2189-2192 (2003)

Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot

V. B. Verma, Martin J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin
Opt. Express 19(5) 4182-4187 (2011)

Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars

Wolfgang-Michael Schulz, Tim Thomay, Marcus Eichfelder, Moritz Bommer, Michael Wiesner, Robert Roßbach, Michael Jetter, Rudolf Bratschitsch, Alfred Leitenstorfer, and Peter Michler
Opt. Express 18(12) 12543-12551 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
    [Crossref]
  2. P. Michler, et al., “Quantum correlation between photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [Crossref] [PubMed]
  3. K. Sebald, et al., “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
    [Crossref]
  4. S. Kako, et al., “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887–892 (2006).
    [Crossref] [PubMed]
  5. L. Fleury, et al., “Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature,” Phys. Rev. Lett. 84, 1148–1151 (2000).
    [Crossref] [PubMed]
  6. T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
    [Crossref]
  7. C. Kurtsiefer, et al., “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  8. S. Strauf, et al., “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704–708 (2007).
    [Crossref]
  9. R. Roβbach, et al., “Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity,” Appl. Phys. Lett. 92, 071105–1-071105-3 (2008).
    [Crossref]
  10. Z. Yuan, et al., “Electrically Driven Single-Photon Source,” Science 295, 102–105 (2002).
    [Crossref]
  11. A. J. Bennett, et al., “Microcavity single-photon-emitting diode,” Appl. Phys. Lett. 86, 181102-1–181102-3 (2005).
    [Crossref]
  12. J. I. Gonzalez, et al., “Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature,” Phys. Rev. Lett. 93, 147402-1–147402-4 (2004).
    [Crossref] [PubMed]
  13. U. Håkanson, et al., “Nano-aperture fabrication for single quantum dot spectroscopy,” Nanotechnology 14, 675–679 (2003).
    [Crossref]
  14. G. J. Beirne, et al., “Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots,” Phys. Rev. B. 75, 195302-1–195302-7 (2007).
    [Crossref]
  15. J. J. Finley, et al., “Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot,” Phys. Rev. B. 63, 161305–1-161305-4 (2001).
    [Crossref]
  16. M. Reischle, et al., “Influence of the exciton dark state on the optical and quantum optical properties of single quantum dots.” Submitted for publication.
  17. M. B. Ward, et al., “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90, 63512–1-63512-3 (2007).
    [Crossref]
  18. M. Pelton, et al., “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602–1-233602-4 (2002).
    [Crossref] [PubMed]
  19. R. Brouri, et al., “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [Crossref]
  20. D. J. P. Ellis, et al., “Electrically addressing a single self-assembled quantum dot,” Appl. Phys. Lett. 88, 133509–1-133509-3 (2006).
    [Crossref]
  21. A. Lochmann, et al., “Electrically driven quantum dot single photon source,” Phys. Status Solidi C 4, 547–550 (2007).
    [Crossref]

2008 (1)

R. Roβbach, et al., “Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity,” Appl. Phys. Lett. 92, 071105–1-071105-3 (2008).
[Crossref]

2007 (4)

G. J. Beirne, et al., “Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots,” Phys. Rev. B. 75, 195302-1–195302-7 (2007).
[Crossref]

M. B. Ward, et al., “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90, 63512–1-63512-3 (2007).
[Crossref]

S. Strauf, et al., “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704–708 (2007).
[Crossref]

A. Lochmann, et al., “Electrically driven quantum dot single photon source,” Phys. Status Solidi C 4, 547–550 (2007).
[Crossref]

2006 (2)

D. J. P. Ellis, et al., “Electrically addressing a single self-assembled quantum dot,” Appl. Phys. Lett. 88, 133509–1-133509-3 (2006).
[Crossref]

S. Kako, et al., “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

2005 (2)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

A. J. Bennett, et al., “Microcavity single-photon-emitting diode,” Appl. Phys. Lett. 86, 181102-1–181102-3 (2005).
[Crossref]

2004 (2)

J. I. Gonzalez, et al., “Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature,” Phys. Rev. Lett. 93, 147402-1–147402-4 (2004).
[Crossref] [PubMed]

T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
[Crossref]

2003 (1)

U. Håkanson, et al., “Nano-aperture fabrication for single quantum dot spectroscopy,” Nanotechnology 14, 675–679 (2003).
[Crossref]

2002 (3)

Z. Yuan, et al., “Electrically Driven Single-Photon Source,” Science 295, 102–105 (2002).
[Crossref]

M. Pelton, et al., “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602–1-233602-4 (2002).
[Crossref] [PubMed]

K. Sebald, et al., “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[Crossref]

2001 (1)

J. J. Finley, et al., “Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot,” Phys. Rev. B. 63, 161305–1-161305-4 (2001).
[Crossref]

2000 (4)

C. Kurtsiefer, et al., “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

P. Michler, et al., “Quantum correlation between photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

L. Fleury, et al., “Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature,” Phys. Rev. Lett. 84, 1148–1151 (2000).
[Crossref] [PubMed]

R. Brouri, et al., “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[Crossref]

Beirne, G. J.

G. J. Beirne, et al., “Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots,” Phys. Rev. B. 75, 195302-1–195302-7 (2007).
[Crossref]

Bennett, A. J.

A. J. Bennett, et al., “Microcavity single-photon-emitting diode,” Appl. Phys. Lett. 86, 181102-1–181102-3 (2005).
[Crossref]

Brouri, R.

Ellis, D. J. P.

D. J. P. Ellis, et al., “Electrically addressing a single self-assembled quantum dot,” Appl. Phys. Lett. 88, 133509–1-133509-3 (2006).
[Crossref]

Finley, J. J.

J. J. Finley, et al., “Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot,” Phys. Rev. B. 63, 161305–1-161305-4 (2001).
[Crossref]

Fleury, L.

L. Fleury, et al., “Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature,” Phys. Rev. Lett. 84, 1148–1151 (2000).
[Crossref] [PubMed]

Gonzalez, J. I.

J. I. Gonzalez, et al., “Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature,” Phys. Rev. Lett. 93, 147402-1–147402-4 (2004).
[Crossref] [PubMed]

Håkanson, U.

U. Håkanson, et al., “Nano-aperture fabrication for single quantum dot spectroscopy,” Nanotechnology 14, 675–679 (2003).
[Crossref]

Kako, S.

S. Kako, et al., “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Kumar, P.

T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, et al., “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Lee, T.-H.

T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
[Crossref]

Lochmann, A.

A. Lochmann, et al., “Electrically driven quantum dot single photon source,” Phys. Status Solidi C 4, 547–550 (2007).
[Crossref]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Mehta, A.

T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
[Crossref]

Michler, P.

P. Michler, et al., “Quantum correlation between photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Pelton, M.

M. Pelton, et al., “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602–1-233602-4 (2002).
[Crossref] [PubMed]

Reischle, M.

M. Reischle, et al., “Influence of the exciton dark state on the optical and quantum optical properties of single quantum dots.” Submitted for publication.

Roßbach, R.

R. Roβbach, et al., “Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity,” Appl. Phys. Lett. 92, 071105–1-071105-3 (2008).
[Crossref]

Sebald, K.

K. Sebald, et al., “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[Crossref]

Strauf, S.

S. Strauf, et al., “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704–708 (2007).
[Crossref]

Ward, M. B.

M. B. Ward, et al., “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90, 63512–1-63512-3 (2007).
[Crossref]

Yuan, Z.

Z. Yuan, et al., “Electrically Driven Single-Photon Source,” Science 295, 102–105 (2002).
[Crossref]

Appl. Phys. Lett. (6)

K. Sebald, et al., “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[Crossref]

T.-H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources,” Appl. Phys. Lett. 85, 100–102 (2004).
[Crossref]

R. Roβbach, et al., “Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity,” Appl. Phys. Lett. 92, 071105–1-071105-3 (2008).
[Crossref]

A. J. Bennett, et al., “Microcavity single-photon-emitting diode,” Appl. Phys. Lett. 86, 181102-1–181102-3 (2005).
[Crossref]

M. B. Ward, et al., “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90, 63512–1-63512-3 (2007).
[Crossref]

D. J. P. Ellis, et al., “Electrically addressing a single self-assembled quantum dot,” Appl. Phys. Lett. 88, 133509–1-133509-3 (2006).
[Crossref]

Nanotechnology (1)

U. Håkanson, et al., “Nano-aperture fabrication for single quantum dot spectroscopy,” Nanotechnology 14, 675–679 (2003).
[Crossref]

Nature (1)

P. Michler, et al., “Quantum correlation between photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Nature Materials (1)

S. Kako, et al., “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Nature Photon. (1)

S. Strauf, et al., “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704–708 (2007).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B. (2)

G. J. Beirne, et al., “Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots,” Phys. Rev. B. 75, 195302-1–195302-7 (2007).
[Crossref]

J. J. Finley, et al., “Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot,” Phys. Rev. B. 63, 161305–1-161305-4 (2001).
[Crossref]

Phys. Rev. Lett. (4)

M. Pelton, et al., “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602–1-233602-4 (2002).
[Crossref] [PubMed]

J. I. Gonzalez, et al., “Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature,” Phys. Rev. Lett. 93, 147402-1–147402-4 (2004).
[Crossref] [PubMed]

L. Fleury, et al., “Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature,” Phys. Rev. Lett. 84, 1148–1151 (2000).
[Crossref] [PubMed]

C. Kurtsiefer, et al., “Stable Solid-State Source of Single Photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

A. Lochmann, et al., “Electrically driven quantum dot single photon source,” Phys. Status Solidi C 4, 547–550 (2007).
[Crossref]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Science (1)

Z. Yuan, et al., “Electrically Driven Single-Photon Source,” Science 295, 102–105 (2002).
[Crossref]

Other (1)

M. Reischle, et al., “Influence of the exciton dark state on the optical and quantum optical properties of single quantum dots.” Submitted for publication.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Color online) Structure of the sample. EL is only seen near the contacted Au-stripe.

Fig. 2.
Fig. 2.

(Color online) Spectra obtained from (a) QD A, (b) QD B, (c) QD C all at 4 K. (d) Spectra obtained from QD C at 40 K, 60 K and 80 K.

Fig. 3.
Fig. 3.

(Color online) (a) SOAM of QD B at 4 K. Red line: Convolution of the IRF with the expected g(2)-function. Inset: IRF which was used for the convolution. (b) Same as (a) but for QD C at 80 K. (c) Spectra of QD B at the same temperature and current as in (a). The vertical lines represent the part of the spectrum that was sent to the APDs for the SOAM. The dashed horizontal line indicates the signal height of the background. The red area is therefore assumed to be the background contribution. (d) Same as (c), but for QD C at 80 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ g b ( 2 ) ( 0 ) ( 1 ρ 2 ) ] ρ 2

Metrics