Abstract

In vivo measurement of retinal blood flow is obtained by measuring the blood velocity of erythrocytes and lumen diameters of the blood vessels using an adaptive optics scanning laser ophthalmoscope. Erythrocyte velocity is measured by tracking erythrocytes moving across a horizontal scanning line. This approach provides high temporal bandwidth measurements, allowing the fluctuation of blood flow during cardiac cycles to be measured. The technique is most applicable to medium-sized blood vessels.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Candido and T. J. Allen, “Haemodynamics in microvascular complications in type 1 diabetes,” Diabetes-Metab. Res 18, 286–304 (2002).
    [CrossRef]
  2. M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
    [CrossRef] [PubMed]
  3. T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
    [CrossRef] [PubMed]
  4. Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
    [CrossRef]
  5. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).
  6. C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
    [CrossRef] [PubMed]
  7. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
    [PubMed]
  8. R. Ferguson, D. X. Hammer, A. E. Elsner, R. Weber, S. A. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express 12, 5198–5208 (2004).
    [CrossRef] [PubMed]
  9. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
    [CrossRef] [PubMed]
  10. C. Riva and B. L. Petrig, “Blue field entoptic phenomenon and blood velocity in the retinal capillaries,” J. Opt. Soc. Am. 70, 1234–1238 (1980).
    [CrossRef] [PubMed]
  11. A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
    [CrossRef] [PubMed]
  12. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  13. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
    [CrossRef]
  14. A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
    [PubMed]
  15. B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).
  16. D. U. Bartsch and W. R. Freeman, “Laser-Tissue Interaction and Artifacts in Confocal Scanning Laser Ophthalmoscopy and Tomography,” Neurosci. Biobehav. R 17, 459–467 (1993).
    [CrossRef]
  17. O. Brinchmann-Hansen and O. Engvold, “Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs,” Acta. Ophothalmol 179, (Suppl) (1986).
  18. N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
    [CrossRef] [PubMed]
  19. A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, “Polarimetric imaging and blood vessel quantification,” Opt. Express 12, 5178–5190 (2004).
    [CrossRef] [PubMed]
  20. S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
    [CrossRef] [PubMed]
  21. A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).
  22. A. G. Koutsiaris, “Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient,” Biorheology 42, 479–491 (2005).
    [PubMed]
  23. B. H. McGhee and E. J. Bridges, “Monitoring Arterial Blood Pressure: What You May Not Know,” Crit. Care. Nurse 22, 60–79 (2002).
    [PubMed]
  24. K. Shimizu and K. Ujie, Structure of Ocular Vessels (Igaku-Schoin Medical Publishers, New York, 1978).
  25. L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
    [CrossRef] [PubMed]

2007 (2)

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
[CrossRef]

2005 (2)

A. G. Koutsiaris, “Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient,” Biorheology 42, 479–491 (2005).
[PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
[PubMed]

2002 (3)

A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
[PubMed]

R. Candido and T. J. Allen, “Haemodynamics in microvascular complications in type 1 diabetes,” Diabetes-Metab. Res 18, 286–304 (2002).
[CrossRef]

B. H. McGhee and E. J. Bridges, “Monitoring Arterial Blood Pressure: What You May Not Know,” Crit. Care. Nurse 22, 60–79 (2002).
[PubMed]

2001 (1)

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

1999 (1)

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

1998 (2)

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
[CrossRef] [PubMed]

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

1997 (3)

J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
[CrossRef]

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

1993 (1)

D. U. Bartsch and W. R. Freeman, “Laser-Tissue Interaction and Artifacts in Confocal Scanning Laser Ophthalmoscopy and Tomography,” Neurosci. Biobehav. R 17, 459–467 (1993).
[CrossRef]

1992 (1)

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

1986 (1)

O. Brinchmann-Hansen and O. Engvold, “Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs,” Acta. Ophothalmol 179, (Suppl) (1986).

1985 (1)

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

1980 (1)

Allen, T. J.

R. Candido and T. J. Allen, “Haemodynamics in microvascular complications in type 1 diabetes,” Diabetes-Metab. Res 18, 286–304 (2002).
[CrossRef]

Bartsch, D. U.

D. U. Bartsch and W. R. Freeman, “Laser-Tissue Interaction and Artifacts in Confocal Scanning Laser Ophthalmoscopy and Tomography,” Neurosci. Biobehav. R 17, 459–467 (1993).
[CrossRef]

Bhardwaj, A.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Bremner, S. N.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

Bridges, E. J.

B. H. McGhee and E. J. Bridges, “Monitoring Arterial Blood Pressure: What You May Not Know,” Crit. Care. Nurse 22, 60–79 (2002).
[PubMed]

Brinchmann-Hansen, O.

O. Brinchmann-Hansen and O. Engvold, “Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs,” Acta. Ophothalmol 179, (Suppl) (1986).

Buck, S.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Burns, S. A.

Candido, R.

R. Candido and T. J. Allen, “Haemodynamics in microvascular complications in type 1 diabetes,” Diabetes-Metab. Res 18, 286–304 (2002).
[CrossRef]

Chapman, N.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Cheney, M.

Chung, H. S.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Cioffi, G. A.

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
[CrossRef] [PubMed]

Ciulla, T. A.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Danis, R. P.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Donnelly, III, W. J.

A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
[PubMed]

Elsner, A.

Elsner, A. E.

Emre, M.

M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
[CrossRef] [PubMed]

Engvold, O.

O. Brinchmann-Hansen and O. Engvold, “Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs,” Acta. Ophothalmol 179, (Suppl) (1986).

Evans, D.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Ferguson, D.

Ferguson, R.

Flammer, J.

M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
[CrossRef] [PubMed]

Freeman, W. R.

D. U. Bartsch and W. R. Freeman, “Laser-Tissue Interaction and Artifacts in Confocal Scanning Laser Ophthalmoscopy and Tomography,” Neurosci. Biobehav. R 17, 459–467 (1993).
[CrossRef]

Gao, X.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Grunwald, J. E.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

Gugleta, K.

M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
[CrossRef] [PubMed]

Hammer, D. X.

Harino, S.

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

Harris, A.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
[CrossRef] [PubMed]

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Helmke, B. P.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

Hughes, A.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Intaglietta, M.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Izatt, J. A.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
[PubMed]

Johnson, P. C.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Kagemann, L.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
[CrossRef] [PubMed]

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Kim, J.

Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
[CrossRef]

Kim, S.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
[CrossRef]

Kong, R. L.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Koutsiaris, A. G.

A. G. Koutsiaris, “Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient,” Biorheology 42, 479–491 (2005).
[PubMed]

Liang, J. Z.

Martin, B.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Martin, B. J.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Martin, J. A.

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

McGhee, B. H.

B. H. McGhee and E. J. Bridges, “Monitoring Arterial Blood Pressure: What You May Not Know,” Crit. Care. Nurse 22, 60–79 (2002).
[PubMed]

McNulty, L.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Miller, D. T.

Minamiyama, M.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

Nakano, A.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

Niimi, H.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

Orgul, S.

M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
[CrossRef] [PubMed]

Petrig, B. L.

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

C. Riva and B. L. Petrig, “Blue field entoptic phenomenon and blood velocity in the retinal capillaries,” J. Opt. Soc. Am. 70, 1234–1238 (1980).
[CrossRef] [PubMed]

Popel, A. S.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Pratt, L. M.

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Queener, H.

A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
[PubMed]

Riva, C.

Riva, C. E.

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
[PubMed]

Romero-Borja, F.

A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
[PubMed]

Roorda, A.

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, III, and H. Queener, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10 (2002).
[PubMed]

Schmid-Schonbein, G. W.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

Shimizu, K.

K. Shimizu and K. Ujie, Structure of Ocular Vessels (Igaku-Schoin Medical Publishers, New York, 1978).

Shonat, R. D.

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

Skalak, R.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

Smithwick, Q.

Stanton, A.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Sugii, Y.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

Thom, S.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Tumbar, R.

Ujie, K.

K. Shimizu and K. Ujie, Structure of Ocular Vessels (Igaku-Schoin Medical Publishers, New York, 1978).

Weber, A.

Weber, R.

Weiter, J.

Williams, D. R.

Witt, N.

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
[CrossRef]

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
[PubMed]

Zweifach, B. W.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

Acta. Ophothalmol (1)

O. Brinchmann-Hansen and O. Engvold, “Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs,” Acta. Ophothalmol 179, (Suppl) (1986).

Am. J. Ophthalmol (1)

T. A. Ciulla, A. Harris, H. S. Chung, R. P. Danis, L. Kagemann, L. McNulty, L. M. Pratt, and B. J. Martin, “Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration,” Am. J. Ophthalmol 128, 75–80 (1999).
[CrossRef] [PubMed]

Am. J. Physiol. Heart. Circ. Physiol (2)

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. Heart. Circ. Physiol 273, H2884–2890 (1997).

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Temporal and spatial variations of cell-free layer width in arterioles,” Am. J. Physiol. Heart. Circ. Physiol 293, H1526–H1535 (2007).
[CrossRef] [PubMed]

Arch. Ophthalmol (1)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol 121, 235–239 (2003).
[PubMed]

Biorheology (1)

A. G. Koutsiaris, “Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient,” Biorheology 42, 479–491 (2005).
[PubMed]

Br. J. Ophthalmol (3)

N. Chapman, N. Witt, X. Gao, A. Bhardwaj, A. Stanton, S. Thom, and A. Hughes, “Computer algorithms for the automated measurement of retinal arteriolar diameters,” Br. J. Ophthalmol 85, 74–79 (2001).
[CrossRef] [PubMed]

M. Emre, S. Orgul, K. Gugleta, and J. Flammer, “Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation,” Br. J. Ophthalmol 88, 662–666 (2004).
[CrossRef] [PubMed]

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol 82, 131–136 (1998).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc (1)

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc 29, 445–455 (2003).

Crit. Care. Nurse (1)

B. H. McGhee and E. J. Bridges, “Monitoring Arterial Blood Pressure: What You May Not Know,” Crit. Care. Nurse 22, 60–79 (2002).
[PubMed]

Diabetes-Metab. Res (1)

R. Candido and T. J. Allen, “Haemodynamics in microvascular complications in type 1 diabetes,” Diabetes-Metab. Res 18, 286–304 (2002).
[CrossRef]

Exp. Eye. Res (1)

C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic-nerve,” Exp. Eye. Res 55, 499–506 (1992).
[CrossRef] [PubMed]

Graef. Arch. Clin. Exp (1)

Y. Yang, S. Kim, and J. Kim, “Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits,” Graef. Arch. Clin. Exp 235, 27–31 (1997).
[CrossRef]

Invest. Ophth. Vis. Sci (1)

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow-rate in human retinal-vessels,” Invest. Ophth. Vis. Sci 26, 1124–1132 (1985).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Neurosci. Biobehav. R (1)

D. U. Bartsch and W. R. Freeman, “Laser-Tissue Interaction and Artifacts in Confocal Scanning Laser Ophthalmoscopy and Tomography,” Neurosci. Biobehav. R 17, 459–467 (1993).
[CrossRef]

Ophthalmology (1)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Survey of Ophthalmology (1)

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Survey of Ophthalmology 42, 509–533 (1998).
[CrossRef] [PubMed]

Other (1)

K. Shimizu and K. Ujie, Structure of Ocular Vessels (Igaku-Schoin Medical Publishers, New York, 1978).

Supplementary Material (2)

» Media 1: AVI (570 KB)     
» Media 2: AVI (1223 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.
Fig.1.

(Media 1) Movie showing movements of both leukocytes and erythrocytes. Leukocytes and erythrocytes are separated from each other by the nature of their movements. The blood vessels are part of the parafoveal capillary network.

Fig. 2.
Fig. 2.

Schematic of two different scanning modes and the resulting images from the AOSLO: (A) regular scanning and the XY image, (B) top 1/3 with regular scanning and bottom 2/3 with XT scanning. The image is a hybrid image with top 1/3 being an XY image and bottom 2/3 being an XT image. Scale bars are 100 µm.

Fig. 3.
Fig. 3.

Schematic diagram of streak formation. Horizontal axis is position of erythrocyte on image lines; vertical axis downwards is increasing time of line acquisition. The steeper the slope, the slower the erythrocyte moves.

Fig. 4.
Fig. 4.

Determination of lumen diameter (Dν ). Dp is the oblique sectional diameter based on the estimation of the extreme horizontal positions of streaks caused by cells moving near the vessel wall, and α is the angle between the scanning line and the blood vessel orientation. Stationary reflections appear as vertical lines. Scale bar is 100 µm.

Fig. 5.
Fig. 5.

(Media 2) Movie showing fluctuating blood velocity during the subject’s cardiac cycle. The blood vessel is a medium-sized artery.

Fig. 6.
Fig. 6.

Change of erythrocyte velocity across the vessel lumen. The different slope angles in the XT image represent different velocities, with steeper slopes indicating lower velocities. At the left and right side of the XT image, the scan line is near the vessel wall and vessel axis, respectively. The horizontal position is noted with different numbers at the bottom of the XT image, and the corresponding velocity profile is shown in the bar plot. Scale bar is 100 µm.

Fig. 7.
Fig. 7.

Locations of arterial blood flow measurements before (a) and after a bifurcation (b & c). Scale bar is 100 µm.

Tables (1)

Tables Icon

Table 1 Calculated results of the vessel branches in Fig. 7

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V p = f · tan θ k
V ax = V p cos α
D v = D p · sin α
V ax V s = f ( D v D c )
Q = V s · π · D v 2 4

Metrics