Abstract

We have developed all-optical modulation of photonic crystal fiber (PCF) by infiltrating photoresponsive liquid crystal (LC) into the voids within the cladding structure. The photo-induced phase transformation of the photoresponsive LC modulates the effective refractive index of the photoresponsive LC-filled cladding, thereby creating an environment of modifiable total internal reflection that tunes the output intensity of guided light upon the stimulus of optical field. The modulation range for the 632 nm wavelength is 10 dB and the response time for switching is less than 1 second by manually obstructing the pumping light path. In addition to altering the power of the pumping laser to actively tune the output intensity, the polarization direction of the pumping laser can also tune the output intensity by 5 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
    [CrossRef]
  2. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
  5. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  6. S. J. Myers, D. P. Fussell, J. M. Dawes, E. Mägi, R. C. McPhedran, B. J. Eggleton, and C. M. de Sterke, "Manipulation of spontaneous emission in a tapered photonic crystal fibre," Opt. Express 14, 12439-12444 (2006).
    [CrossRef] [PubMed]
  7. H. Nguyen, P. Domachuk, B. Eggleton, M. Steel, M. Straub, M. Gu, and M. Sumetsky, "A new slant on photonic crystal fibers," Opt. Express 12, 1528-1539 (2004).
    [CrossRef] [PubMed]
  8. J. Laegsgaard, O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett. 29, 2473-2475 (2004).
    [CrossRef] [PubMed]
  9. M. A. Mortensen, M. D. Nielsen, J. F. Folkenberg, C. Jakobsen, and H. R. Simonsen, "Photonic crystal fiber with a hybrid honeycomb cladding," Opt. Express 12, 468-472 (2004).
    [CrossRef] [PubMed]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tuennermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003).
    [CrossRef] [PubMed]
  11. N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, "Distributed feedback photonic crystal fibre (DFB-PCF) laser," Opt. Express 13, 2924-2930 (2005).
    [CrossRef] [PubMed]
  12. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
    [CrossRef] [PubMed]
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. Auguste, and J. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express,  13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  14. V. L. Kalashnikov, E. Sorokin, I. T. Sorokina, "Spatial-temporal structure of the femtosecond third harmonic generation in photonic-crystal fibers," Opt. Express 15, 11301-11312 (2007).
    [CrossRef] [PubMed]
  15. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoeiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 148224-8231 (2006).
    [CrossRef] [PubMed]
  16. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 1511413-11426 (2007).
    [CrossRef] [PubMed]
  17. S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
    [CrossRef] [PubMed]
  18. E. Yablonovitch, "Liquid versus photonics crystals," Nature 401, 539-541 (1999).
    [CrossRef]
  19. K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  20. C. Kerbage and B. J. Eggleton, "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
    [CrossRef]
  21. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
    [CrossRef] [PubMed]
  22. F. Du, Y.Q. Lu and S.T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
    [CrossRef]
  23. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, "Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers," Opt. Express 15, 12145-12150 (2007).
    [CrossRef] [PubMed]
  24. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S. T. Wu, "Highly tunable large-core single-mode liquid- crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
    [CrossRef] [PubMed]
  25. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).
  26. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  27. T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
    [CrossRef]
  28. I. C. Khoo, Liquid Crystals (Wiley, New York, 1994).

2008

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

2007

2006

2005

2004

2003

2002

2001

1999

E. Yablonovitch, "Liquid versus photonics crystals," Nature 401, 539-541 (1999).
[CrossRef]

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T. T.

Anawati, D. S.

Auguste, J.

Bang, O.

Barth, M.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

Bennet, F. H.

Benson, O.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
[CrossRef]

Bjarklev, A.

Blondy, J.

Broeng, J.

Busch, K.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Canning, J.

Chinaud, J.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

Dawes, J. M.

de Sterke, C. M.

Delaye, P.

Domachuk, P.

Du, F.

F. Du, Y.Q. Lu and S.T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Dufva, M.

Eggleton, B.

Eggleton, B. J.

Fehri, M. F.

Février, S.

Folkenberg, J. F.

Frey, R.

Fussell, D. P.

Gauvreau, B.

Gauza, S.

Groothoff, N.

Gu, M.

Hale, A.

Hassani, A.

Headley, C.

Hermann, D. S.

Hoeiby, P. E.

Hsiao, V. K. S.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

Huang, T. J.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

Ikeda, T.

T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
[CrossRef]

Iliew, R.

Inglis, H.

Jakobsen, C.

Jensen, J. B.

John, S.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Juluri, B. K.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

Kabashin, A.

Kalashnikov, V. L.

Kerbage, C.

C. Kerbage and B. J. Eggleton, "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

Kivshar, Y. S.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
[CrossRef]

Krolikowski, W.

Laegsgaard, J.

Larsen, T. T.

Lederer, F.

Li, J.

Limpert, J.

Litchinitser, N. M.

Lu, Y.Q.

F. Du, Y.Q. Lu and S.T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Lyytikainen, K.

Mägi, E.

McPhedran, R. C.

Mortensen, M. A.

Myers, S. J.

Neshev, D. N.

Nguyen, H.

Nielsen, M. D.

Nolte, S.

Pedersen, L. H.

Petersson, A.

Rasmussen, P. D.

Rindorf, L.

Roosen, G.

Rosberg, C. R.

Rouvie, A.

Roy, P.

Russell, J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
[CrossRef]

Ryan, T.

Schreiber, T.

Simonsen, H. R.

Skorobogatiy, M.

Smolka, S.

Sorokin, E.

Sorokina, I. T.

St, P.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

Steel, M.

Straub, M.

Sumetsky, M.

Tuennermann, A.

Viale, P.

Vienne, G.

Westbrook, P. S.

Windeler, R.

Wu, S. T.

Wu, S.T.

F. Du, Y.Q. Lu and S.T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Liquid versus photonics crystals," Nature 401, 539-541 (1999).
[CrossRef]

Yiou, S.

Zellmer, H.

Zheng, Y. B.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

Adv. Mater.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals" Adv. Mater. (2008) (In press).

Appl. Opt.

Appl. Phys. Lett.

F. Du, Y.Q. Lu and S.T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

C. Kerbage and B. J. Eggleton, "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
[CrossRef]

J. Mater. Chem.

T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications," J. Mater. Chem. 13, 2037-2057 (2003).
[CrossRef]

Nature

E. Yablonovitch, "Liquid versus photonics crystals," Nature 401, 539-541 (1999).
[CrossRef]

Nature (London)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature (London) 434, 488 (2005).
[CrossRef] [PubMed]

Opt. Express

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. Auguste, and J. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express,  13, 4786-4791 (2005).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Sorokin, I. T. Sorokina, "Spatial-temporal structure of the femtosecond third harmonic generation in photonic-crystal fibers," Opt. Express 15, 11301-11312 (2007).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoeiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 148224-8231 (2006).
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 1511413-11426 (2007).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

S. J. Myers, D. P. Fussell, J. M. Dawes, E. Mägi, R. C. McPhedran, B. J. Eggleton, and C. M. de Sterke, "Manipulation of spontaneous emission in a tapered photonic crystal fibre," Opt. Express 14, 12439-12444 (2006).
[CrossRef] [PubMed]

H. Nguyen, P. Domachuk, B. Eggleton, M. Steel, M. Straub, M. Gu, and M. Sumetsky, "A new slant on photonic crystal fibers," Opt. Express 12, 1528-1539 (2004).
[CrossRef] [PubMed]

M. A. Mortensen, M. D. Nielsen, J. F. Folkenberg, C. Jakobsen, and H. R. Simonsen, "Photonic crystal fiber with a hybrid honeycomb cladding," Opt. Express 12, 468-472 (2004).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tuennermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003).
[CrossRef] [PubMed]

N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, "Distributed feedback photonic crystal fibre (DFB-PCF) laser," Opt. Express 13, 2924-2930 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, "Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers," Opt. Express 15, 12145-12150 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tuneable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 283, 1476-1478 (1998).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).

I. C. Khoo, Liquid Crystals (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of optical setup to monitor the guided light tuned by the external optical field using (a) white light (b) He-Ne laser as probe light.

Fig. 2.
Fig. 2.

(a) Photochemical phase transition of photoresponsive LC system. (b) The polarized micrograph of PCF infiltrated with photoresponsive LCs.

Fig. 3.
Fig. 3.

CCD camera image of the photoresponsive LC-filled PCF output of white light (a) without stimulus of pumping light and (b) with stimulus of pumping light. The pumping light source is a violet laser diode of 20 mW.

Fig. 4.
Fig. 4.

CCD camera pictures of the output profile from photoresponsive LC-filled PCF (a) at different power of pumping light and (b) at pumping light on-off switching.

Fig. 5.
Fig. 5.

The optical field-dependent output intensity of photoresponsive LC-filled PCF.

Fig. 6.
Fig. 6.

The polarization-dependent output intensity of photoresponsive LC-filled PCF. The power of pumping laser is 20 mW.

Metrics