Abstract

We quantify the refractive index changes (RIC) in single-mode ytterbium-doped optical fibers induced by optical pulses at 980 nm and, for the first time, report details of the effect dynamics. The RIC dynamics is shown to follow that of the population of the excited/unexcited ion states with a factor proportional to their polarizability difference (PD). The absolute PD value is evaluated in the spectral range of 1460–1620 nm for different fiber samples and is found to be independent on the fiber geometry and on the ion concentration. The PD dispersion profile indicates to a predominant far-resonance UV rather than near-resonant IR transitions contribution to the RIC.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
    [CrossRef]
  2. E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (Willey, New York, 1994).
  3. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M.J. F. Digonnet, "Experimental and Theoretical Analysis of the Resonant Nonlinearity in Ytterbium-Doped Fiber," J. Lightwave Technol. 16, 798-806 (1998).
    [CrossRef]
  4. O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
    [CrossRef]
  5. E. Bochove, "Nonlinear refractive index of rare-earth-doped fiber laser," Opt. Lett. 29, 2414-2416 (2004).
    [CrossRef] [PubMed]
  6. Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
    [CrossRef]
  7. H. Garsia, A.M. Johnson, F.A. Oguama, S. Trivedi, "Pump-induced nonlinear refractive index change in erbium and ytterbium-doped fibers: theory and experiment," Opt. Lett. 30, 1261-1263 (2005).
    [CrossRef]
  8. O.L.  Antipov, D.V.  Bredikhin, O.N.  Eremeykin, A.P.  Savikin, E.V.  Ivakin, A.V.  Sukhadolau, "Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
    [CrossRef] [PubMed]
  9. D.N. Messias, T. Catunda, J.D. Myers, M.J. Myers, "Nonlinear electronic line shape determination in Yb3+-doped phosphate glass," Opt. Lett. 32, 665-667 (2007).
    [CrossRef] [PubMed]
  10. J. Margerie, R. Moncorgé, P. Nagtegaele, "Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal," Phys. Rev. B 74, 235108-10 (2006)
    [CrossRef]
  11. S.I. Stepanov, A.A. Fotiadi, P. Mégret, "Effective recording of dynamic phase gratings in Yb-doped fibers with saturable absorption at 1064nm," Opt. Express 15, 8832-8837 (2007).
    [CrossRef] [PubMed]
  12. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
    [CrossRef]
  13. T.Y. Fan, "Laser Beam Combining for High-Power, High-Radiance Sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).
    [CrossRef]
  14. H. Bruesselbach, Sh. Wang, M. Minden, D.C. Jones, and M. Mangir, "Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere," J. Opt. Soc. Am. B 22, 347-353 (2005).
  15. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
  16. L. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New. York, 1983).

2007 (2)

2006 (2)

2005 (4)

2004 (2)

E. Bochove, "Nonlinear refractive index of rare-earth-doped fiber laser," Opt. Lett. 29, 2414-2416 (2004).
[CrossRef] [PubMed]

Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

2003 (1)

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

1998 (1)

1997 (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Andres, M.V.

Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

Antipov, O.L.

O.L.  Antipov, D.V.  Bredikhin, O.N.  Eremeykin, A.P.  Savikin, E.V.  Ivakin, A.V.  Sukhadolau, "Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
[CrossRef] [PubMed]

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Arkwright, J. W.

Atkins, G. R.

Barmenkov, Yu.O.

Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

Bochove, E.

Bredikhin, D.V.

O.L.  Antipov, D.V.  Bredikhin, O.N.  Eremeykin, A.P.  Savikin, E.V.  Ivakin, A.V.  Sukhadolau, "Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
[CrossRef] [PubMed]

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Bruesselbach, H.

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
[CrossRef]

H. Bruesselbach, Sh. Wang, M. Minden, D.C. Jones, and M. Mangir, "Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere," J. Opt. Soc. Am. B 22, 347-353 (2005).

Catunda, T.

Digonnet, M. J. F.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Digonnet, M.J. F.

Elango, P.

Eremeykin, O.N.

O.L.  Antipov, D.V.  Bredikhin, O.N.  Eremeykin, A.P.  Savikin, E.V.  Ivakin, A.V.  Sukhadolau, "Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
[CrossRef] [PubMed]

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Fan, T.Y.

T.Y. Fan, "Laser Beam Combining for High-Power, High-Radiance Sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).
[CrossRef]

Fotiadi, A.A.

Garsia, H.

Ivakin, E.V.

Johnson, A.M.

Jones, D. C.

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
[CrossRef]

Jones, D.C.

Kir???yanov, A.V.

Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

Kuznetsov, M.S.

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Mangir, M.

Mangir, M. S.

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
[CrossRef]

Margerie, J.

J. Margerie, R. Moncorgé, P. Nagtegaele, "Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal," Phys. Rev. B 74, 235108-10 (2006)
[CrossRef]

Mégret, P.

Messias, D.N.

Minden, M.

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
[CrossRef]

H. Bruesselbach, Sh. Wang, M. Minden, D.C. Jones, and M. Mangir, "Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere," J. Opt. Soc. Am. B 22, 347-353 (2005).

Moncorgé, R.

J. Margerie, R. Moncorgé, P. Nagtegaele, "Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal," Phys. Rev. B 74, 235108-10 (2006)
[CrossRef]

Myers, J.D.

Myers, M.J.

Nagtegaele, P.

J. Margerie, R. Moncorgé, P. Nagtegaele, "Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal," Phys. Rev. B 74, 235108-10 (2006)
[CrossRef]

Oguama, F.A.

Pantell, R. H.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Rogers, J.L.

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J.L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 13-15 (2005).
[CrossRef]

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Savikin, A.P.

O.L.  Antipov, D.V.  Bredikhin, O.N.  Eremeykin, A.P.  Savikin, E.V.  Ivakin, A.V.  Sukhadolau, "Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
[CrossRef] [PubMed]

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Stepanov, S.I.

Sukhadolau, A.V.

Trivedi, S.

Vorob???ev, V.A.

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

Wang, Sh.

Whitbread, T.

Appl. Phys. Lett. (1)

Yu.O. Barmenkov, A.V. Kir�??yanov, M.V. Andres, "Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm," Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob�??ev, D.V. Bredikhin, M.S. Kuznetsov, "Electronic Changes of Refractive Index in Intensively Pumped Nd:YAG Laser Crystals," IEEE J. Quantum Electron. 39, 910-918 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T.Y. Fan, "Laser Beam Combining for High-Power, High-Radiance Sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (1)

J. Margerie, R. Moncorgé, P. Nagtegaele, "Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal," Phys. Rev. B 74, 235108-10 (2006)
[CrossRef]

Other (3)

E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (Willey, New York, 1994).

W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).

L. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New. York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for testing of Yb-doped fibers (a); (b): the pump pulse profile (red), recorded oscilloscope trace (black), and reconstructed phase trace (blue).

Fig. 2.
Fig. 2.

Phase shifts at 1550 nm induced in Fiber 1 of 2m length by pulses of different (0.02–2.5 ms) pulse duration (a) and of different (2–145 mW) pulse amplitude (b). Inserts show the same phase shifts normalized to their maximal levels (only decaying parts are presented).

Fig. 3.
Fig. 3.

Phase shifts at 1550 nm induced by 4ms pulses in 2 m long Fiber 2 as functions of time (a), normalized time τ=1-exp(-t/τsp ) (b), pulse amplitude (c). (d) shows the slope δφ/δt| t→0.

Fig. 4.
Fig. 4.

ASE from Fiber 2 in backward (B) and forward (F) directions during the excitation pulse: optical spectra (a,b), and detected power (c). Curve (d) presents the reconstructed power.

Fig.5.
Fig.5.

Phase shift induced by 145-mW pulses: in different lengths of Fiber 3 (a), in 2 m long Fibers 1–4 (b), and in Fiber 2 at different probe wavelengths (c). Figure (d) shows the relative polarizability difference (points) in comparison with the resonance and non-resonance PD contributions at ~1µm (blue), and ~0.4 µm (black), and the dependence ~ρT (0)/λT (red).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ n = 2 π F L 2 n 0 Δ p δ N 2
δ φ = 4 π 2 λ T 0 L 0 δ n ( z , r ) ρ T ( r ) rdrdz η ¯ ρ T ( 0 ) λ T [ 4 π 2 F L 2 n 0 Δ p ] δ N 2
d δ N 2 dt = P in P out h v P P ASE h v s δ N 2 τ sp
δ φ ( t ) = K τ sp [ 1 exp ( t τ sp ) ] P 0
P ASE ( t ) P in K 1 [ d δ φ ( t ) dt + δ φ ( t ) τ sp ]

Metrics