Abstract

We report on the experimental evidence of four wave mixing (FWM) between the two polarization components of a vector soliton formed in a passively mode-locked fiber laser. Extra spectral sidebands with out-of-phase intensity variation between the polarization resolved soliton spectra was firstly observed, which was identified to be caused by the energy exchange between the two soliton polarization components. Other features of the FWM spectral sidebands and the soliton internal FWM were also experimentally investigated and numerically confirmed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirnne, and M. Pessa, "1.5-µm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 28,364-366 (2003).
    [CrossRef] [PubMed]
  2. M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, "Nonlinearly limited saturable-absorber mode-locking of an erbium fiber laser," Opt. Lett. 24,1074-1076 (1999).
    [CrossRef]
  3. D. N. Christodoulides and R. I. Joseph, "Vector solitons in birefringent nonlinear dispersive media," Opt. Lett. 13,53-55 (1988).
    [CrossRef] [PubMed]
  4. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temporal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am. B 17,354-365 (2000).
    [CrossRef]
  5. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of Polarization-Locked Vector Solitons in an Optical Fiber, "Phys. Rev. Lett. 82,3988-3991 (1999).
    [CrossRef]
  6. C. R. Menyuk, "Nonlinear Pulse-Propagation in Birefringent Optical Fibers," IEEE J. Quantum Electron. QE-23,174-176 (1987).
    [CrossRef]
  7. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temporal vector solitons in a fiber laser: theory," J. Opt. Soc. Am. B 17,366-372 (2000).
    [CrossRef]
  8. S. T. Cundiff, B. C. Collings, and W. H. Knox, "Polarization locking in an isotropic, mode locked soliton Er/Yb fiber laser," Opt. Express 1,12-21 (1997).
    [CrossRef] [PubMed]
  9. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
    [CrossRef]
  10. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23,280-282 (1998).
    [CrossRef]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

2003 (1)

2000 (2)

1999 (2)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of Polarization-Locked Vector Solitons in an Optical Fiber, "Phys. Rev. Lett. 82,3988-3991 (1999).
[CrossRef]

M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, "Nonlinearly limited saturable-absorber mode-locking of an erbium fiber laser," Opt. Lett. 24,1074-1076 (1999).
[CrossRef]

1998 (1)

1997 (1)

1988 (1)

1987 (1)

C. R. Menyuk, "Nonlinear Pulse-Propagation in Birefringent Optical Fibers," IEEE J. Quantum Electron. QE-23,174-176 (1987).
[CrossRef]

Akhmediev, N. N.

Ankiewicz, A.

Bergman, K.

Christodoulides, D. N.

Collings, B. C.

Cundiff, S. T.

Dagenais, M.

Fermann, M. E.

Fox, S.

Harter, D.

Hu, Y.

Jiang, M.

Jimenez, J.

Joseph, R. I.

Jouhti, T.

Karirnne, S.

Knox, W. H.

Konttinen, J.

Lederer, M. J.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

Luther-Davies, B.

Menyuk, C. R.

C. R. Menyuk, "Nonlinear Pulse-Propagation in Birefringent Optical Fibers," IEEE J. Quantum Electron. QE-23,174-176 (1987).
[CrossRef]

Okhotnikov, O. G.

Pessa, M.

Soto-Crespo, J. M.

Sucha, G.

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. R. Menyuk, "Nonlinear Pulse-Propagation in Birefringent Optical Fibers," IEEE J. Quantum Electron. QE-23,174-176 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A,  72, 043816 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of Polarization-Locked Vector Solitons in an Optical Fiber, "Phys. Rev. Lett. 82,3988-3991 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the fiber laser. SESAM: semiconductor saturable absorber mirror; PC: polarization controller; WDM: wavelength-division multiplexer; EDF: erbium-doped fiber.

Fig. 2.
Fig. 2.

Optical spectra of the phase locked vector solitons of the laser measured without passing and passing through a polarizer: (a) and (b) were measured under different linear cavity birefringence.

Fig. 3.
Fig. 3.

Numerically calculated optical spectra of the vector solitons formed in fiber ring lasers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ u z = i β u δ u t i k 2 2 u t 2 + i k 6 3 u t 3 + i γ ( u 2 + 2 3 v 2 ) u + i γ 3 v 2 u * + g 2 u + g 2 Ω g 2 2 u t 2 v z = i βv + δ v t i k 2 2 v t 2 + i k 6 3 v t 3 + i γ ( v 2 + 2 3 u 2 ) v + i γ 3 u 2 v * + g 2 v + g 2 Ω g 2 2 v t 2
g = G exp [ ( u 2 + v 2 ) dt p sat ]
l s t = l s l 0 T rec u 2 + v 2 E sat l s

Metrics