Abstract

A new method for in-situ detection and measurement of dissolved methane in aqueous media/environments with a limit of detection of 0.2 nM (3σ, and t90~110s) and range (1–300 nM) is presented. The detection method is based on refractive index (RI) modulation of a modified PolyDiMethylSiloxane (PDMS) layer incorporating molecules of cryptophane-A [1] which have a selective and reversible affinity for methane [2]. The refractive index is accurately determined using surface plasmon resonance (SPR) [3]. A prototype sensor has been repeatedly tested, using a dissolved gas calibration system under a range of temperature and salinity regimes. Laboratory-based results show that the technique is specific, sensitive, and reversible. The method is suitable for miniaturization and incorporation into in situ sensor technology.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
    [CrossRef]
  2. L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
    [CrossRef]
  3. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
    [CrossRef]
  4. W. S. Reeburgh, “Global Methane Biogeochemistry,” Treatise on Geochemistry 4, 1–25 (2003).
  5. D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
    [CrossRef]
  6. G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
    [CrossRef]
  7. E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
    [CrossRef]
  8. H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
    [CrossRef]
  9. S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
    [CrossRef]
  10. W. J. Mitsch and J. G. Gosselink, Wetlands (Wiley, New York, 2000).
  11. E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
    [CrossRef]
  12. K. A. Kvenvolden, “Methane hydrate-a major reservoir of carbon in the shallow geosphere?,” Chem. Geol. 71, 41–51 (1988).
    [CrossRef]
  13. R. W. Collier and M. D. Lilley, “Composition of shelf methane seeps on the Cascadia Continental Margin,” Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005).
    [CrossRef]
  14. S. Kroger and R. J. Law, “Sensing the sea,” Trends in Biotechnology 23, 250–256 (2005).
    [CrossRef] [PubMed]
  15. J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).
  16. R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
    [CrossRef]
  17. S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
    [CrossRef]
  18. R. Camilli and H. Hemond, “NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer,” Trends in analytical chemistry 23, 307–313 (2004).
    [CrossRef]
  19. R. Collier and G. Klinkhammer, “Applications of the METS Methane Sensor to the In-situ Detection of Methane Over a Range of Time Scales and Environments,” in RIDGE In situ Sensors Workshop(2000).
  20. H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.
  21. B. Mizaikoff, “Mid-Infrared evanescent wave sensors - a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
    [CrossRef]
  22. T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
    [CrossRef]
  23. P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
    [CrossRef]
  24. H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
    [CrossRef]
  25. K. Ideta and T. Arakawa, “Surface plasmon resonance study for the detection of some chemical species,” Sens. Actuators B 13, 384–386 (1993).
    [CrossRef]
  26. E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
    [CrossRef]
  27. B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
    [CrossRef]
  28. T. Urashi and T. Arakawa, “Detection of lower hydrocarbons by means of surface plasmon resonance,” Sens. Actuators B 76, 32–35 (2001).
    [CrossRef]
  29. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  30. A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.
  31. K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
    [CrossRef]
  32. Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
    [CrossRef]
  33. M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).
  34. M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
    [CrossRef]
  35. J. Gabard and A. Collet, “Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit,” J.C.S. Chem. Comm. 21, 1137–1139 (1981).
    [CrossRef]
  36. J. Canceill and A. Collet, “Two-step Synthesis of D3 and C3h Cryptophanes,” J.C.S. Chem. Comm. 9, 582–584 (1988).
    [CrossRef]
  37. T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
    [CrossRef] [PubMed]
  38. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons by light,” Naturforsch A 23, 2135–2136 (1963).
  39. P. J. Brockwell and R. A. Davis, The Analysis of Time Series: Theory and Methods (Springer-Verlag, New York, 1986).
  40. J. W. Swinnerton and V. J. Linnenbom, “Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography,” Journal of Gas Chromatography 5, 570–573 (1967).
  41. M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
    [CrossRef]
  42. R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
    [CrossRef]
  43. T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
    [CrossRef]
  44. L. A. Currie, “Detection: International update, and some emerging dilemmas involving calibration, the blank and multiple detection decisions,” Chemom. Intell. Lab. Systems 37, 151–181 (1997).
    [CrossRef]
  45. W. S. Reeburgh, “Oceanic Methane Biogeochemistry,” Chem. Rev. 107, 486–513 (2007).
    [CrossRef] [PubMed]
  46. J.-L. Charlou and J.-P. Donval, “Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9625–9642 (1993).
    [CrossRef]
  47. J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
    [CrossRef]
  48. C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
    [CrossRef]
  49. J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
    [CrossRef]
  50. J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
    [CrossRef]
  51. N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).
  52. V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
    [CrossRef]
  53. H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
    [CrossRef]
  54. G. L. Klunder, J. Bürck, H.-J. Ache, R. J. Silva, and R. E. Russo, “Temperature Effects on a Fiber-Optic Evanescent Wave Absorption Sensor,” Appl. Spectrosc. 48, 387–393 (1994).
    [CrossRef]

2008 (1)

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

2007 (2)

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

W. S. Reeburgh, “Oceanic Methane Biogeochemistry,” Chem. Rev. 107, 486–513 (2007).
[CrossRef] [PubMed]

2006 (3)

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

2005 (7)

R. W. Collier and M. D. Lilley, “Composition of shelf methane seeps on the Cascadia Continental Margin,” Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005).
[CrossRef]

S. Kroger and R. J. Law, “Sensing the sea,” Trends in Biotechnology 23, 250–256 (2005).
[CrossRef] [PubMed]

S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
[CrossRef]

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
[CrossRef] [PubMed]

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).

2004 (4)

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

R. Camilli and H. Hemond, “NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer,” Trends in analytical chemistry 23, 307–313 (2004).
[CrossRef]

2003 (4)

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

W. S. Reeburgh, “Global Methane Biogeochemistry,” Treatise on Geochemistry 4, 1–25 (2003).

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

2002 (5)

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
[CrossRef]

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

2001 (1)

T. Urashi and T. Arakawa, “Detection of lower hydrocarbons by means of surface plasmon resonance,” Sens. Actuators B 76, 32–35 (2001).
[CrossRef]

2000 (1)

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

1999 (3)

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

B. Mizaikoff, “Mid-Infrared evanescent wave sensors - a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

1998 (2)

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

1997 (1)

L. A. Currie, “Detection: International update, and some emerging dilemmas involving calibration, the blank and multiple detection decisions,” Chemom. Intell. Lab. Systems 37, 151–181 (1997).
[CrossRef]

1996 (1)

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

1995 (1)

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

1994 (2)

G. L. Klunder, J. Bürck, H.-J. Ache, R. J. Silva, and R. E. Russo, “Temperature Effects on a Fiber-Optic Evanescent Wave Absorption Sensor,” Appl. Spectrosc. 48, 387–393 (1994).
[CrossRef]

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

1993 (3)

L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
[CrossRef]

K. Ideta and T. Arakawa, “Surface plasmon resonance study for the detection of some chemical species,” Sens. Actuators B 13, 384–386 (1993).
[CrossRef]

J.-L. Charlou and J.-P. Donval, “Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9625–9642 (1993).
[CrossRef]

1992 (1)

R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
[CrossRef]

1988 (2)

J. Canceill and A. Collet, “Two-step Synthesis of D3 and C3h Cryptophanes,” J.C.S. Chem. Comm. 9, 582–584 (1988).
[CrossRef]

K. A. Kvenvolden, “Methane hydrate-a major reservoir of carbon in the shallow geosphere?,” Chem. Geol. 71, 41–51 (1988).
[CrossRef]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

1981 (1)

J. Gabard and A. Collet, “Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit,” J.C.S. Chem. Comm. 21, 1137–1139 (1981).
[CrossRef]

1967 (1)

J. W. Swinnerton and V. J. Linnenbom, “Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography,” Journal of Gas Chromatography 5, 570–573 (1967).

1963 (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons by light,” Naturforsch A 23, 2135–2136 (1963).

Abad, A.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Abdelghani, A.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

Ache, H.-J.

Aka-Ngnui, T.

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

Amann, H.

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Amouroux, D.

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

Andreae, M. O.

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

Appel, F.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Arakawa, T.

T. Urashi and T. Arakawa, “Detection of lower hydrocarbons by means of surface plasmon resonance,” Sens. Actuators B 76, 32–35 (2001).
[CrossRef]

K. Ideta and T. Arakawa, “Surface plasmon resonance study for the detection of some chemical species,” Sens. Actuators B 13, 384–386 (1993).
[CrossRef]

Baker, E. T.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Bange, H. W.

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

Barcelo, D.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Bartell, U. H.

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

Barth, J.

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

Bartholomew, D. U.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

Bartik, K.

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

Benounis, M.

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

Bernabeu, E.

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Boetius, A.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Bohnenstiehl, D.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Borowski, W. S.

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

Brewer, P. G.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Brockwell, P. J.

P. J. Brockwell and R. A. Davis, The Analysis of Time Series: Theory and Methods (Springer-Verlag, New York, 1986).

Brotin, T.

T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
[CrossRef] [PubMed]

Brown, M. O.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Bürck, J.

Bussell, J.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Byrne, R. H.

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

Calle, A.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Camilli, R.

R. Camilli and H. Hemond, “NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer,” Trends in analytical chemistry 23, 307–313 (2004).
[CrossRef]

Canceill, J.

J. Canceill and A. Collet, “Two-step Synthesis of D3 and C3h Cryptophanes,” J.C.S. Chem. Comm. 9, 582–584 (1988).
[CrossRef]

A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.

Charlou, J. L.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Charlou, J.-L.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

J.-L. Charlou and J.-P. Donval, “Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9625–9642 (1993).
[CrossRef]

Chauvet, J. P.

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

Cherif, K.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

Chinowsky, T. M.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

Christof, O.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Collet, A.

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
[CrossRef]

J. Canceill and A. Collet, “Two-step Synthesis of D3 and C3h Cryptophanes,” J.C.S. Chem. Comm. 9, 582–584 (1988).
[CrossRef]

J. Gabard and A. Collet, “Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit,” J.C.S. Chem. Comm. 21, 1137–1139 (1981).
[CrossRef]

A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.

Collier, R.

R. Collier and G. Klinkhammer, “Applications of the METS Methane Sensor to the In-situ Detection of Methane Over a Range of Time Scales and Environments,” in RIDGE In situ Sensors Workshop(2000).

Collier, R. W.

R. W. Collier and M. D. Lilley, “Composition of shelf methane seeps on the Cascadia Continental Margin,” Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005).
[CrossRef]

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Cowen, J. P.

J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
[CrossRef]

Currie, L. A.

L. A. Currie, “Detection: International update, and some emerging dilemmas involving calibration, the blank and multiple detection decisions,” Chemom. Intell. Lab. Systems 37, 151–181 (1997).
[CrossRef]

Damm, E.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Davis, R. A.

P. J. Brockwell and R. A. Davis, The Analysis of Time Series: Theory and Methods (Springer-Verlag, New York, 1986).

De Angelis, M. A.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

De Gregorio, S.

S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
[CrossRef]

de Wilde, H.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Dentener, F.

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

Denuault, G.

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Donval, J. P.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Donval, J.-P.

J.-L. Charlou and J.-P. Donval, “Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9625–9642 (1993).
[CrossRef]

Duran, R.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Dutasta, J. P.

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
[CrossRef] [PubMed]

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
[CrossRef]

Dutasta, J.-P.

A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.

Dvinskikh, S. V.

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Elkind, J. L.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

Feely, R. A.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Foucher, J. P.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Foucher, J.-P.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Freeman, J.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Fries, D. P.

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

Gabard, J.

J. Gabard and A. Collet, “Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit,” J.C.S. Chem. Comm. 21, 1137–1139 (1981).
[CrossRef]

Garcia-Gil, S.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Garel, L.

L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
[CrossRef]

Gharib, J. J.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Gosselink, J. G.

W. J. Mitsch and J. G. Gosselink, Wetlands (Wiley, New York, 2000).

Grant, D.

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Gray, N. D.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Gurrieri, S.

S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
[CrossRef]

Ha, N. Bich

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

Head, I. M.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Heeschen, K.

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Heimann, M.

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

Helder, W.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Hemond, H.

R. Camilli and H. Hemond, “NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer,” Trends in analytical chemistry 23, 307–313 (2004).
[CrossRef]

Hey, R. N.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Hildebrandt, A.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Høgh, N.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Houweling, S.

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

Ideta, K.

K. Ideta and T. Arakawa, “Surface plasmon resonance study for the detection of some chemical species,” Sens. Actuators B 13, 384–386 (1993).
[CrossRef]

Iglesias, J.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Iversen, N.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Jaffrezic, N.

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

Jaffrezic-Renault, N.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

Jarvis, D.

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

Jean-Baptiste, P.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Jerosch, K.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Judd, A. G.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Kaiser, R.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

Kaminski, T.

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

Kitidis, V.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Klages, M.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Kleinrock, M.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Klinkhammer, G.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

R. Collier and G. Klinkhammer, “Applications of the METS Methane Sensor to the In-situ Detection of Methane Over a Range of Time Scales and Environments,” in RIDGE In situ Sensors Workshop(2000).

Klunder, G. L.

Kosro, P. M.

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

Kowalewska, G.

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

Kowalewski, J.

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons by light,” Naturforsch A 23, 2135–2136 (1963).

Kroger, S.

S. Kroger and R. J. Law, “Sensing the sea,” Trends in Biotechnology 23, 250–256 (2005).
[CrossRef] [PubMed]

Kronfeldt, H.-D.

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Kvenvolden, K. A.

K. A. Kvenvolden, “Methane hydrate-a major reservoir of carbon in the shallow geosphere?,” Chem. Geol. 71, 41–51 (1988).
[CrossRef]

Law, R. J.

S. Kroger and R. J. Law, “Sensing the sea,” Trends in Biotechnology 23, 250–256 (2005).
[CrossRef] [PubMed]

Lechuga, L. M.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Leclercq, M.

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Lehaitre, M.

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Lelieveld, J.

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

Lembke, C. E.

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lilley, M. D.

R. W. Collier and M. D. Lilley, “Composition of shelf methane seeps on the Cascadia Continental Margin,” Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Linke, P.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Linnenbom, V. J.

J. W. Swinnerton and V. J. Linnenbom, “Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography,” Journal of Gas Chromatography 5, 570–573 (1967).

Lozach, B.

A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.

Lucht, S.

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

Luhmer, M.

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

Lupton, J. E.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

MacCraith, B. D.

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Malb, G.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Martin, J. R.

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

Martinez, F.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Masson, M.

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Massoth, G. J.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Mauriz, E.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Middelburg, J. J.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Mitsch, W. J.

W. J. Mitsch and J. G. Gosselink, Wetlands (Wiley, New York, 2000).

Mizaikoff, B.

B. Mizaikoff, “Mid-Infrared evanescent wave sensors - a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Montoya, A.

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Mowlem, M.

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Murphy, T.

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

Muyakshin, S. I.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Naar, D. F.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Nicolas, D.

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

Nieuwenhuize, J.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Panteleev, G.

N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).

Pardee, D.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Pascal, R. W.

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Pasteris, J. D.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Paull, C. K.

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

Peltzer, T.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Perez, H.

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

Petrov, O.

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Pfannkuche, J.

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

Popp, B. N.

J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
[CrossRef]

Prien, R. D.

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Quinn, J. G.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons by light,” Naturforsch A 23, 2135–2136 (1963).

Ramesh, R.

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

Rapsomanikis, S.

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

Reeburgh, W. S.

W. S. Reeburgh, “Oceanic Methane Biogeochemistry,” Chem. Rev. 107, 486–513 (2007).
[CrossRef] [PubMed]

W. S. Reeburgh, “Global Methane Biogeochemistry,” Treatise on Geochemistry 4, 1–25 (2003).

Rehder, G.

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

Reisse, J.

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

Resing, J. A.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Roberts, G.

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

Rodrigo, C.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Roy, N.

T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
[CrossRef] [PubMed]

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Russo, R. E.

Sandstrom, D.

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Sansone, F. J.

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

Sauter, E. J.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Schirrer, R.

R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
[CrossRef]

Schlüter, M.

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Schmidt, H.

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

Seifert, R.

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Semiletov, I.

N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).

Shakova, N.

N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).

Shichijyo, S.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

Shioda, T.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

Short, R. T.

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

Sih, B. C.

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

Silva, R. J.

Sosna, M.

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Souteyrand, E.

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

Spiess, F. N.

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

Suess, E.

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

Suzuki, K.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

Swinnerton, J. W.

J. W. Swinnerton and V. J. Linnenbom, “Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography,” Journal of Gas Chromatography 5, 570–573 (1967).

Takamatsu, N.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

Taylor, G.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Thepin, P.

R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
[CrossRef]

Tizzard, L. H.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Toler, S. K.

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

Torres, G.

R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
[CrossRef]

Tosner, Z.

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Uher, G.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Upstill-Goddard, R. C.

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

Urashi, T.

T. Urashi and T. Arakawa, “Detection of lower hydrocarbons by means of surface plasmon resonance,” Sens. Actuators B 76, 32–35 (2001).
[CrossRef]

Ussler III, W.

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

Valenza, M.

S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
[CrossRef]

Wen, X.

J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
[CrossRef]

White, S. N.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Wolf, M. O.

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

Woodside, J.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Wopenka, B.

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Young, J. F.

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

Zitter, T.

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

Angew.Chem. Int. Ed. Engl. (1)

L. Garel, J. P. Dutasta, and A. Collet, “Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution,” Angew.Chem. Int. Ed. Engl. 32, 1169–1171 (1993).
[CrossRef]

Appl. Spectrosc. (1)

Biogeochemistry (1)

J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, “Methane distribution in European tidal estuaries,” Biogeochemistry 59, 95–119 (2002).
[CrossRef]

Biosens. Bioelectron. (1)

E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, “Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor,” Biosens. Bioelectron. 21, 2129–2136 (2006).
[CrossRef]

Chem. Geol. (1)

K. A. Kvenvolden, “Methane hydrate-a major reservoir of carbon in the shallow geosphere?,” Chem. Geol. 71, 41–51 (1988).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, “A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes,” Chem. Phys. Lett. 388, 208–211 (2004).
[CrossRef]

Chem. Rev. (1)

W. S. Reeburgh, “Oceanic Methane Biogeochemistry,” Chem. Rev. 107, 486–513 (2007).
[CrossRef] [PubMed]

Chemom. Intell. Lab. Systems (1)

L. A. Currie, “Detection: International update, and some emerging dilemmas involving calibration, the blank and multiple detection decisions,” Chemom. Intell. Lab. Systems 37, 151–181 (1997).
[CrossRef]

Deep Sea Res. I (2)

J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, “Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea,” Deep Sea Res. I 50, 941–958 (2003).
[CrossRef]

P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, “Development of a laser Raman spectrometer for deep-ocean science,” Deep Sea Res. I 51, 739–753 (2004).
[CrossRef]

Earth Planet. Sci. Lett. (1)

E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles,” Earth Planet. Sci. Lett. 243, 354–365 (2006).
[CrossRef]

Estuar. Coast. Shelf Sci. (1)

D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, “Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea,” Estuar. Coast. Shelf Sci. 54, 575–587 (2002).
[CrossRef]

Geochem. Geophys. Geosyst. (1)

S. De Gregorio, S. Gurrieri, and M. Valenza, “A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications,” Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005).
[CrossRef]

Geochim. Cosmoch. Acta (1)

J. P. Cowen, X. Wen, and B. N. Popp, “Methane in aging hydrothermal plumes,” Geochim. Cosmoch. Acta 66, 3563–3571 (2002).
[CrossRef]

Geology (1)

C. K. Paull, W. Ussler III, W. S. Borowski, and F. N. Spiess, “Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates,” Geology 23, 89–92 (1995).
[CrossRef]

Geophys. Res. Lett. (3)

N. Shakova, I. Semiletov, and G. Panteleev, “The distribution f methane on the Siberian Arctic shelves: Implications for the marine methane cycle,” Geophys. Res. Lett. 32 (2005).

H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, “Methane in surface waters of the Arabian Sea,” Geophys. Res. Lett. 25, 3547–3550 (1998).
[CrossRef]

R. W. Collier and M. D. Lilley, “Composition of shelf methane seeps on the Cascadia Continental Margin,” Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005).
[CrossRef]

Global Biogeochem. Cycles (2)

G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, “Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling,” Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002).
[CrossRef]

H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, “Methane in the Baltic and North Seas and a reassessment of the marine emission of methane,” Global Biogeochem. Cycles 8, 465–480 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, “129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution,” J. Am. Chem. Soc. 120, 784–791 (1998).
[CrossRef]

J. Appl. Phys. (1)

B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, “Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films,” J. Appl. Phys. 98, 10.1063/1061.2138373 (2005).
[CrossRef]

J. Geophys. Res. (3)

E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, “Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°-32.3°S,” J. Geophys. Res. 107, 2130, doi:2110.1029/2001JB000651 (2002).
[CrossRef]

S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, “Inverse modeling of methane sources and sinks using the adjoint of a global transport model,” J. Geophys. Res. 106, 26137–26160 (1999).
[CrossRef]

J.-L. Charlou and J.-P. Donval, “Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge,” J. Geophys. Res. 98, 9625–9642 (1993).
[CrossRef]

J. Mar. Syst. (1)

V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, “The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange,” J. Mar. Syst. 66, 258–271 (2006).
[CrossRef]

J. Mat. Sci. (1)

R. Schirrer, P. Thepin, and G. Torres, “Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds,” J. Mat. Sci. 27, 3424–3434 (1992).
[CrossRef]

J. Org. Chem. (1)

T. Brotin, N. Roy, and J. P. Dutasta, “Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst,” J. Org. Chem. 70, 6187–6195 (2005).
[CrossRef] [PubMed]

J. Raman. Spectrosc. (1)

T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, “Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water,” J. Raman. Spectrosc. 31, 943–948 (2000).
[CrossRef]

J.C.S. Chem. Comm. (2)

J. Gabard and A. Collet, “Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit,” J.C.S. Chem. Comm. 21, 1137–1139 (1981).
[CrossRef]

J. Canceill and A. Collet, “Two-step Synthesis of D3 and C3h Cryptophanes,” J.C.S. Chem. Comm. 9, 582–584 (1988).
[CrossRef]

Journal of Gas Chromatography (1)

J. W. Swinnerton and V. J. Linnenbom, “Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography,” Journal of Gas Chromatography 5, 570–573 (1967).

Mar. Poll. Bull. (1)

H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, “Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS),” Mar. Poll. Bull. 49, 229–234 (2004).
[CrossRef]

Meas. Sci. Technol. (2)

R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, “Development of an underwater mass spectrometry system for in situ chemical analysis,” Meas. Sci. Technol. 10, 1195–1201 (1999).
[CrossRef]

B. Mizaikoff, “Mid-Infrared evanescent wave sensors - a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

Naturforsch A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons by light,” Naturforsch A 23, 2135–2136 (1963).

Polymer (1)

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polyimide,” Polymer 44, 137–142 (2003).
[CrossRef]

Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII (1)

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Sens. Actuators A (1)

M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, “NIR and optical fiber sensor for gases detection produced by transformation oil degradation,” Sens. Actuators A 141, 76–83 (2008).
[CrossRef]

Sens. Actuators B (5)

E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B 33, 182–187 (1996).
[CrossRef]

K. Ideta and T. Arakawa, “Surface plasmon resonance study for the detection of some chemical species,” Sens. Actuators B 13, 384–386 (1993).
[CrossRef]

T. Urashi and T. Arakawa, “Detection of lower hydrocarbons by means of surface plasmon resonance,” Sens. Actuators B 76, 32–35 (2001).
[CrossRef]

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B 91, 266–274 (2003).
[CrossRef]

M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, “Development of a reliable microelectrode dissolved oxygen sensor,” Sens. Actuators B 123, 344–351 (2007).
[CrossRef]

Treatise on Geochemistry (1)

W. S. Reeburgh, “Global Methane Biogeochemistry,” Treatise on Geochemistry 4, 1–25 (2003).

Trends in analytical chemistry (1)

R. Camilli and H. Hemond, “NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer,” Trends in analytical chemistry 23, 307–313 (2004).
[CrossRef]

Trends in Biotechnology (1)

S. Kroger and R. J. Law, “Sensing the sea,” Trends in Biotechnology 23, 250–256 (2005).
[CrossRef] [PubMed]

Other (6)

J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, “Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments.,” in EOS Trans. Am. Geophys. Union (1999).

R. Collier and G. Klinkhammer, “Applications of the METS Methane Sensor to the In-situ Detection of Methane Over a Range of Time Scales and Environments,” in RIDGE In situ Sensors Workshop(2000).

H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, “Technical elements and Potential Application of Spectroscopy for Ocean Monitoring,” in OCEANS’98(1998), pp. 1780–1784.

W. J. Mitsch and J. G. Gosselink, Wetlands (Wiley, New York, 2000).

A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, “Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials,” in Supraolecular Chemistry I — Directed Synthesis and Molecular Recognition(1993), pp. 103–129.

P. J. Brockwell and R. A. Davis, The Analysis of Time Series: Theory and Methods (Springer-Verlag, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

General structure of cryptophane hosts; the cavity volume is determined by Z functionalities, the external properties are dependent on the X and Y groups (a) and molecular structure of cryptophane-A (b).

Fig. 2.
Fig. 2.

Cross section of the methane sensor incorporating a Spreeta 2000 chip (adapted from Chinowsky et al., 2003) and the sensing film. A: gold layer (10 mm×4 mm×50 nm); B: reactive layer (PDMS+cryptophane A- 50–100 µm).

Fig. 3.
Fig. 3.

Schematic representation of the gas calibration system. A: saturated solution reservoir, B: measurement cell, C: outlet connector, D: temperature probe, E: sampling port, F: outlet pump connector, G: valve, H: pure methane gas, I: glass tubing, J: pump, K: SPR sensor, M: magnetic stirrer.

Fig. 4.
Fig. 4.

Response of the sensor due to changes of dissolved methane concentration (solid line) compared with the response of non-sensing layer, i.e. without cryptophane (dashed line). Filled circles are the concentration of methane measured in control samples by gas chromatography. A: in degassed solution, B: in 50 nM CH4-solution, C: in degassed solution, D: in degassed solution with mixing.

Fig. 5.
Fig. 5.

Water absorption in the polymer (filled circles). 10 minutes are necessary to obtain a stable baseline at room temperature. The presence of cryptophane-A in the polymer (grey squares) does not influence the water absorption.

Fig. 6.
Fig. 6.

Calibration curve obtained with “sensor 4” using the gas calibration rig (filled circles). Data were linearly fitted (R2=0.9885). Errors bars are 2 times the standard deviation on RI measurement. Samples (opened circles) were taken for control (a). Calibration curves obtained in different experimental conditions (direct bubbling and gas calibration rig). Filled circles: sensor 2 (direct bubbling); filled triangles: sensor 2–30 days (direct bubbling); grey squares: sensor 3 (direct bubbling); opened circles: sensor 3 (gas rig); opened triangles: sensor 4 (gas rig) (b and c).

Fig. 7.
Fig. 7.

Temperature effect on the sensor response (opened squares) compared with the response of a non-sensing layer (filled circles).

Fig. 8.
Fig. 8.

Salinity effect on the sensor response (filled circles and opened squares) compared with the response of a non-sensing layer (grey triangles).

Tables (1)

Tables Icon

Table 1. Sensitivity, noise and detection limits

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

c i = c i 1 + c sat V ex V tot c i 1 V ex V tot

Metrics