Abstract

Ultrasound-modulated optical imaging (or tomography) is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the localization of an absorbing object embedded in a strongly scattering medium. We propose to improve the sensitivity of the technique by using a pulsed single-frequency laser to raise the optical peak power applied to the scattering medium and thereby collect more ultrasonically tagged photons. Moreover, when the detection of tagged photons is done with a photorefractive interferometer, the high optical peak power reduces the response time of the photorefractive crystal below the speckle field decorrelation time. Results obtained with a GaAs photorefractive interferometer are presented for 30- and 60-mm thick scattering media.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley and Sons, Hoboken, New Jersey, 2007).
  2. L. Wang, S. L. Jacques, and X. Zhao, "Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media," Opt. Lett. 20, 629-631 (1995).
    [CrossRef] [PubMed]
  3. S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, "Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing," Opt. Lett. 24, 181-183 (1999).
    [CrossRef]
  4. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, "Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection," Opt. Lett. 30, 1360-1362 (2005).
    [CrossRef] [PubMed]
  5. S. Sakadzic and L. V. Wang, "High-resolution ultrasound-modulated optical tomography in biological tissues," Opt. Lett. 29, 2770-2772 (2004).
    [CrossRef] [PubMed]
  6. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and Ch. A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509-2511, (2004).
    [CrossRef] [PubMed]
  7. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, "Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues," Opt. Express 12, 5469-5474 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5469.
    [CrossRef] [PubMed]
  8. F. A. Duck, "Medical and non-medical protection standards for ultrasound and infrasound," Prog. Biophys. Mol. Biol. 93, 176-191 (2007).
    [CrossRef]
  9. Laser Institute of America, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (ANSI, Orlando, Florida, 2000).
  10. J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
    [CrossRef]
  11. A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
    [CrossRef]
  12. J.-P. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485-499 (1986).
    [CrossRef] [PubMed]
  13. L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  14. L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John Wiley and Sons, New York, 1962).
  15. J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials (Springer-Verlag, New York, 1977).
  16. D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
    [CrossRef]
  17. W. A. Riley and W. R. Klein, "Piezo-optic coefficients of liquids," J. Acous. Soc. Am. 42, 1258-1261 (1967).
    [CrossRef]
  18. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-µm wavelength region, " Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  19. S. Prahl, "Optical absorption of water," http://omlc.ogi.edu/spectra/water/.
  20. S.-R. Kothapalli, S. Sakadzic, C. Kim, and L. V. Wang, "Imaging optically scattering objects with ultrasound-modulated optical tomography, " Opt. Lett. 32, 2351-2353 (2007).
    [CrossRef] [PubMed]

2007

F. A. Duck, "Medical and non-medical protection standards for ultrasound and infrasound," Prog. Biophys. Mol. Biol. 93, 176-191 (2007).
[CrossRef]

S.-R. Kothapalli, S. Sakadzic, C. Kim, and L. V. Wang, "Imaging optically scattering objects with ultrasound-modulated optical tomography, " Opt. Lett. 32, 2351-2353 (2007).
[CrossRef] [PubMed]

2005

2004

2001

L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

1999

1995

1994

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

1992

D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
[CrossRef]

1986

J.-P. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485-499 (1986).
[CrossRef] [PubMed]

1985

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

1973

1967

W. A. Riley and W. R. Klein, "Piezo-optic coefficients of liquids," J. Acous. Soc. Am. 42, 1258-1261 (1967).
[CrossRef]

Atlan, M.

Blonigen, F.

Blouin, A.

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

Boccara, A. C.

Delaye, P.

DiMarzio, Ch. A.

Dubois, N.

D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
[CrossRef]

Duck, F. A.

F. A. Duck, "Medical and non-medical protection standards for ultrasound and infrasound," Prog. Biophys. Mol. Biol. 93, 176-191 (2007).
[CrossRef]

Fink, M.

D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
[CrossRef]

Forget, B. C.

Gross, M.

Hale, G. M.

Jacques, S. L.

Kim, C.

Klein, W. R.

W. A. Riley and W. R. Klein, "Piezo-optic coefficients of liquids," J. Acous. Soc. Am. 42, 1258-1261 (1967).
[CrossRef]

Kothapalli, S.-R.

Lebec, M.

Lévêque, S.

Maguluri, G.

Monchalin, J.-P.

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

J.-P. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485-499 (1986).
[CrossRef] [PubMed]

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

Murray, T. W.

Nieva, A.

Querry, M. R.

Ramaz, F.

Riley, W. A.

W. A. Riley and W. R. Klein, "Piezo-optic coefficients of liquids," J. Acous. Soc. Am. 42, 1258-1261 (1967).
[CrossRef]

Roosen, G.

Roy, R. A.

Royer, D.

D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
[CrossRef]

Saint-Jalmes, H.

Sakadzic, S.

Sui, L.

Wang, L.

Wang, L. V.

Zhao, X.

Appl. Opt.

Appl. Phys. Lett.

D. Royer, N. Dubois, and M. Fink, "Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer," Appl. Phys. Lett. 61, 153-155 (1992)
[CrossRef]

J.-P. Monchalin, "Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer," Appl. Phys. Lett. 47, 14-16 (1985).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

J.-P. Monchalin, "Optical detection of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485-499 (1986).
[CrossRef] [PubMed]

J. Acous. Soc. Am.

W. A. Riley and W. R. Klein, "Piezo-optic coefficients of liquids," J. Acous. Soc. Am. 42, 1258-1261 (1967).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Prog. Biophys. Mol. Biol.

F. A. Duck, "Medical and non-medical protection standards for ultrasound and infrasound," Prog. Biophys. Mol. Biol. 93, 176-191 (2007).
[CrossRef]

Other

Laser Institute of America, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (ANSI, Orlando, Florida, 2000).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley and Sons, Hoboken, New Jersey, 2007).

S. Prahl, "Optical absorption of water," http://omlc.ogi.edu/spectra/water/.

L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John Wiley and Sons, New York, 1962).

J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials (Springer-Verlag, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the setup for the ultrasound-modulated optical imaging experiment. L: single-frequency laser source, BS: beam splitter, R: reference beam, S: signal beam, SM: scattering medium, UT: ultrasonic transducer, PRI: photorefractive interferometer. (b) Geometry of the scattering medium. The black cylinder is an optically absorbing object which is acoustically transparent.

Fig. 2.
Fig. 2.

(a) Layout of the Nd:YAG amplifier. MO: 200-mW master oscillator, OI1-2: optical isolators, LR1-2: Nd:YAG laser rods (φ=3 mm, L=100 mm), FL: flashlamp, HW: half-wave plate, QW: quarter-wave plate, TFP: thin-film polarizer. Other components are plane dielectric mirrors. (b) Typical output pulse intensity profile.

Fig. 3.
Fig. 3.

(a) Layout of the setup used to calibrate the ultrasonic pressure wave. SO: sunflower oil, A: air, UT: ultrasonic transducer, UB: ultrasonic beam, PB: probe beam, HI: heterodyne interferometer. (b) Typical calibrated displacement of the interface and the corresponding ultrasonic pressure wave in sunflower oil for a 10-cycle toneburst.

Fig. 4.
Fig. 4.

(a) Lateral intensity profile of the acoustic beam in the plane at the near field distance of the transducer in sunflower oil. (b) Measured on-axis pressure profile.

Fig. 5.
Fig. 5.

Layout of the photorefractive interferometer. S: signal beam, R: reference beam, C: GaAs crystal, LLG: liquid light guide, P: thin sheet polarizer, HW: half-wave plate, PBS: polarizing beam splitter, FP: folding prisms, BR: balanced receiver using two InGaAs photodiodes (φ=3 mm). Other components are aspheric lenses (φ=25 mm, EFL=20 mm).

Fig. 6.
Fig. 6.

(a) Tagged-photon signals as a function of time obtained with 10-cycle tonebursts of different pressure wave amplitudes. (b) Corresponding maximums of the tagged-photon signals as a function of the pressure wave amplitude. The curve is a parabolic fit with the experimental points.

Fig. 7.
Fig. 7.

(a) Tagged-photon signals as a function of time obtained with tonebursts of the same pressure but with 2n acoustic cycles (n=0: lower curve, n=7: upper curve). (b) Corresponding maximums of the tagged-photon signals as a function of the number of acoustic cycles.

Fig. 8.
Fig. 8.

(a) Tagged-photon signal with a 5.3-mm diameter cylindrical absorbing object in the insonified zone. (b) Corresponding signals when the absorbing object is located in front of the insonified zone. In (a) an (b), the number of pulses used to average the signal is indicated aside each curve.

Fig. 9.
Fig. 9.

(a) Detection of a cylindrical absorbing object in the insonified zone with a diameter of 3.3 mm (red line) and 5.3 mm (blue line). (b) Detection of a 4.3-mm diameter cylindrical object with a low optical absorption (red line) and high optical absorption (blue line).

Fig. 10.
Fig. 10.

Tagged-photon signals obtained in a 60-mm thick scattering medium using 10-cycle acoustic bursts. (a) The red points were obtained by translating the transducer along the axis x and the black curve was obtained from a temporal to spatial mapping along the axis z. (b) Signals obtained with (red line) and without (black line) an optically absorbing cylinder of 5.3 mm diameter.

Fig. 11.
Fig. 11.

Tagged-photon signals obtained in a 60-mm thick scattering medium by using 100-cycle acoustic bursts. The number of pulses used to average the signal is indicated aside each curve.

Fig. 12.
Fig. 12.

(a) Tagged-photon signals obtained in a 30-mm thick chicken breast by using 10-cycle acoustic bursts. The absorbing object was a black rubber inclusion (6×6×4 mm3). Each curve is identified with the number of pulses used to average the data. (b) Tagged-photon signals obtained in a 60-mm thick sample of chicken breast by using 10-cycle (upper trace) and 20-cycle (lower trace) acoustic bursts. The absorbing object was a black rubber inclusion (6×6×5 mm3). Each curve was obtained by averaging with 512 pulses.

Metrics