Abstract

Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar nanostructured metallic objects acting as isolated chiral metaobjects. Our analysis demonstrate how surface plasmons, which are lossy bidimensional electromagnetic waves propagating on top of the structure, can delocalize light information in the just precise way for giving rise to this subtle effect.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. -F. M. Arago, “Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique,” Mém. Inst. France, Part I  12 (1811).
  2. L. Pasteur, “Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire,” C. R. Acad. Sci. Paris 26, 535–539 (1848).
  3. E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987).
    [PubMed]
  4. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd ed. (Pergamon, New York, 1984).
    [PubMed]
  5. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [CrossRef] [PubMed]
  6. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [CrossRef] [PubMed]
  10. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  11. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
    [CrossRef] [PubMed]
  12. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
    [CrossRef]
  13. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  14. B. K. Canfield, S. Kujala1, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
    [CrossRef] [PubMed]
  15. B. K. Canfield, S. Kujala1, K. Laiho1, K. Jefimovs, J. Turunen, and M. Kauranen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Opt. Express 12, 5418–5423 (2004).
    [CrossRef] [PubMed]
  16. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
    [CrossRef]
  17. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
    [CrossRef] [PubMed]
  18. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  19. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
    [CrossRef] [PubMed]
  20. J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure.” Proc. R. Soc. London A 63, 146–152 (1898).
    [CrossRef]
  21. L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
    [CrossRef]
  22. L. D. Barron, “Parity and optical activity,” Nature 238, 17–19 (1972).
    [CrossRef] [PubMed]
  23. S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by planar chiral structure”, Phys. Rev. E 71, 037603 (2005).
    [CrossRef]
  24. A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
    [CrossRef]
  25. M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
    [CrossRef]
  26. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through a single aperture surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
    [CrossRef] [PubMed]
  27. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  28. F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quant. Electr. 21, 109–151 (1997).
    [CrossRef]
  29. E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der drift, “Polarization tomography of metallic nanohole arrays.” Opt. Lett. 30, 90–92 (2005).
    [CrossRef]
  30. C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
    [CrossRef]

2007 (4)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
[CrossRef] [PubMed]

2006 (3)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
[CrossRef]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

2005 (5)

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by planar chiral structure”, Phys. Rev. E 71, 037603 (2005).
[CrossRef]

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der drift, “Polarization tomography of metallic nanohole arrays.” Opt. Lett. 30, 90–92 (2005).
[CrossRef]

2004 (4)

2003 (4)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

1997 (1)

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quant. Electr. 21, 109–151 (1997).
[CrossRef]

1994 (1)

L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

1972 (1)

L. D. Barron, “Parity and optical activity,” Nature 238, 17–19 (1972).
[CrossRef] [PubMed]

1898 (1)

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure.” Proc. R. Soc. London A 63, 146–152 (1898).
[CrossRef]

1848 (1)

L. Pasteur, “Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire,” C. R. Acad. Sci. Paris 26, 535–539 (1848).

1811 (1)

C. -F. M. Arago, “Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique,” Mém. Inst. France, Part I  12 (1811).

Alkemade, P. F. A.

Altewischer, E.

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Altewisher, E.

Arago, C. -F. M.

C. -F. M. Arago, “Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique,” Mém. Inst. France, Part I  12 (1811).

Bagnall, D. M.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef] [PubMed]

Barron, L. D.

L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

L. D. Barron, “Parity and optical activity,” Nature 238, 17–19 (1972).
[CrossRef] [PubMed]

Bose, J. C.

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure.” Proc. R. Soc. London A 63, 146–152 (1898).
[CrossRef]

Canfield, B. K.

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Decker, M.

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through a single aperture surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through a single aperture surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der drift, “Polarization tomography of metallic nanohole arrays.” Opt. Lett. 30, 90–92 (2005).
[CrossRef]

Hecht, E.

E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987).
[PubMed]

Hecht, L.

L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala1, K. Laiho1, K. Jefimovs, J. Turunen, and M. Kauranen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Opt. Express 12, 5418–5423 (2004).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala1, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

Kauranen, M.

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

Klein, M. W.

Koch, S. W.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Krasavin, A.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Kujala1, S.

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Laiho1, K.

Landau, L. D.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd ed. (Pergamon, New York, 1984).
[PubMed]

Le Jeune, B.

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quant. Electr. 21, 109–151 (1997).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quant. Electr. 21, 109–151 (1997).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd ed. (Pergamon, New York, 1984).
[PubMed]

Linden, S.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Moloney, J. V.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Pasteur, L.

L. Pasteur, “Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire,” C. R. Acad. Sci. Paris 26, 535–539 (1848).

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef] [PubMed]

Pitaevskii, L. P.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd ed. (Pergamon, New York, 1984).
[PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by planar chiral structure”, Phys. Rev. E 71, 037603 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Reichelt, M.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Stroucken, T.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala1, K. Laiho1, K. Jefimovs, J. Turunen, and M. Kauranen, “Remarkable polarization sensitivity of gold nanoparticle arrays,” Opt. Express 12, 5418–5423 (2004).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala1, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

van der drift, E. W. J. M.

van Exter, M. P.

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der drift, “Polarization tomography of metallic nanohole arrays.” Opt. Lett. 30, 90–92 (2005).
[CrossRef]

van Zuuk, A.

Wegener, M.

Woerdman, J. P.

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der drift, “Polarization tomography of metallic nanohole arrays.” Opt. Lett. 30, 90–92 (2005).
[CrossRef]

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Wright, E. M.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Zheludev, N. I.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by planar chiral structure”, Phys. Rev. E 71, 037603 (2005).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures”, Appl. Phys. B 84, 97–101 (2006).
[CrossRef]

Appl. Phys. Let. (1)

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwalength-period arrays of chiral metallic particles,” Appl. Phys. Let. 83, 234–236 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

C. R. Acad. Sci. Paris (1)

L. Pasteur, “Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire,” C. R. Acad. Sci. Paris 26, 535–539 (1848).

Chem. Phys. Lett. (1)

L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98–S105 (2006).
[CrossRef]

Mém. Inst. France (1)

C. -F. M. Arago, “Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique,” Mém. Inst. France, Part I  12 (1811).

Nano Lett. (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[CrossRef]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

L. D. Barron, “Parity and optical activity,” Nature 238, 17–19 (1972).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B. (1)

C. Genet, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Optical depolarization induced by arrays of subwavelength metal holes,” Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Phys. Rev. E (1)

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by planar chiral structure”, Phys. Rev. E 71, 037603 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manisfestation of planar chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time symmetry of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Proc. R. Soc. London A (1)

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure.” Proc. R. Soc. London A 63, 146–152 (1898).
[CrossRef]

Prog. Quant. Electr. (1)

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quant. Electr. 21, 109–151 (1997).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef] [PubMed]

Other (3)

E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987).
[PubMed]

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd ed. (Pergamon, New York, 1984).
[PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Chiral plasmonic metamolecules. On the top panel: scanning electron micrographs of the left (L) and right (R) handed enantiomer (mirror image) planar chiral structures investigated. The scale bar is 3 µm long. The parameters characterizing the structure are the following: hole diameter d=350 nm, film thickness h=310 nm, grating period P=760 nm, groove width w=370 nm, and groove depth s=80 nm. Values for h,w, and s were chosen from the known optimal resonant geometrical properties of circular SP antennas [8]. The structures are milled, with a focus ion beam, in a gold film deposited on a glass substrate. On the bottom panel: transmission spectra at normal incidence of individual left (blue curve) and right handed (red curve) Archimede spirals illuminated from the air side.

Fig. 2.
Fig. 2.

Analysis of the polarization states for an input light with variable linear polarization for both the left (left panel) and right handed (right panel) individual chiral structures of Fig. 1. The data points (acquired with a laser light at λ=780 nm) are compared to the predictions from Eq. (2) (continuous curves) for respectively the transmitted intensity analyzed along the direction: |x〉(green), |y〉 (yellow), |+45°〉 (cyan), |-45°〉 (magenta), |L〉 (red), and |R〉 (blue). The total transmitted intensity is also shown (black). The symmetries between both panel expected from group theory (see appendix D) are observed experimentally. The insets show in each panel the ellipses of polarization and the handedness (arrow) associated with the two corotating eingenstates associated with the Jones matrix ���� (blue) and ���� (red).

Fig. 3.
Fig. 3.

Full polarization tomography. Poincaré sphere of unity radius associated with the input state represented by the Stokes vector X [3, 28]. Also shown are the results of Fig. 2 for the left (blue) and right handed (red) structures if the linearly polarized incident state draw the black circle in the (X 1, X 2) equator plane of the input sphere. Data points are compared with the predictions from ����,�� exp. (continuous curves) and of Eq. (2) (dashed curves).

Fig. 4.
Fig. 4.

Principle of the polarization experiment. (a), Sketch of the optical set up described in the text. The images are recorded by using a CMOS camera. (b), A typical image of the transmitting nanohole showing the Airy spot associated with diffraction by the optical microscope. The scale bar is 2 µm long. (c), Crosscut of the intensity profile along the yellow dotted line shown in (b).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

𝒥 𝓛 th . = ( A B C A ) , 𝒥 𝓛 th . = ( A C B A ) ,
𝒥 𝓛 fit = ( 1.000 0.166 + i 0.221 0.131 + i 0.099 1.000 ) ,
𝒥 𝓡 fit = ( 1.000 0.129 + i 0.098 0.170 + i 0.230 1.000 ) .
𝓜 𝓛 exp . = ( 1.000 0.031 0.107 0.029 0.029 0.958 0.044 0.251 0.105 0.037 0.953 0.287 0.029 0.261 0.282 0.809 ) ,
𝓜 𝓡 exp . = ( 1.000 0.035 0.111 0.023 0.027 0.949 0.051 0.246 0.096 0.034 0.943 0.267 0.011 0.252 0.277 0.745 ) .
𝓜 glass = ( 1.0000 ̲ 0.0060 0.0040 0.0070 0.0030 0.9851 ̲ 0.0010 0.0020 0.0020 0.0020 0.9965 ̲ 0.0030 0.0050 0.0040 0.0030 0.9821 ̲ )
𝓜 𝓛 th . = ( 𝓜 00 th . 𝓜 01 th . 𝓜 02 th . 𝓜 03 th . 𝓜 01 th . 𝓜 11 th . 𝓜 12 th . 𝓜 13 th . 𝓜 02 th . 𝓜 12 th . 𝓜 22 th . 𝓜 23 th . 𝓜 03 th . 𝓜 13 th . 𝓜 23 th . 𝓜 33 th . ) .
B A = 𝓜 01 th . 𝓜 13 th . 𝓜 00 th . + 𝓜 33 th . + i 𝓜 23 th . 𝓜 02 th . 𝓜 00 th . + 𝓜 33 th .
C A = 𝓜 01 th . 𝓜 13 th . 𝓜 00 th . + 𝓜 33 th . + i 𝓜 23 th . + 𝓜 02 th . 𝓜 00 th . + 𝓜 33 th . .
𝓜 𝓛 fit = ( 1.000 0.033 0.116 0.023 0.033 0.951 0.043 0.282 0.116 0.043 0.951 0.304 0.023 0.282 0.304 0.902 ) ,
𝓜 𝓡 fit = ( 1.000 0.0359 0.125 0.026 0.039 0.949 0.044 0.283 0.125 0.044 0.948 0.311 0.026 0.283 0.311 0.897 ) .
Ψ out = 𝓙 ̂ 𝓛 Ψ in
Π ̂ 𝒥 ̂ 𝓛 Π ̂ 1 = 𝒥 ̂ 𝓡 𝒥 ̂ 𝓛
Π ̂ Ψ out = 𝓙 ̂ 𝓡 Π ̂ Ψ in .
i 𝓙 ̂ 𝓛 θ = i 𝓙 ̂ 𝓡 θ ,
I total ( Left ) ( θ ) = I total ( Right ) ( θ ) ,
I x , y ( Left ) ( θ ) = I x , y ( Right ) ( θ ) ,
I ± 45 ° ( Left ) ( θ ) = I 45 ° ( Right ) ( θ ) ,
I L , R ( Left ) ( θ ) = I R , L ( Right ) ( θ ) ,
S 0 = I x + I y , S 1 = I x I y
S 2 = I + 45 ° I 45 ° , S 3 = I L I R ,
( S 𝓛 , 𝓡 ; 0 S 𝓛 , 𝓡 ; 1 S 𝓛 , 𝓡 ; 2 S 𝓛 , 𝓡 ; 3 ) = 𝓜 𝓛 , 𝓡 ( S 0 S 1 S 2 S 3 ) .
X in ( θ ) = ( cos ( 2 θ ) sin ( 2 θ ) 0 ) ,
n 𝓛 , 𝓡 = ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( 2 π 3 ) ) × ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( π 2 ) ) ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( 2 π 3 ) ) × ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( π 2 ) )
n 𝓛 , 𝓡 = ( U 𝓛 , 𝓡 V 𝓛 , 𝓡 W 𝓛 , 𝓡 ) ,
n 𝓛 = ( 0.2845 0.3065 0.9084 ) , n 𝓡 = ( 0.2861 0.3139 0.95053 ) .
n 𝓛 , 𝓡 · ( X 𝓛 , 𝓡 ( θ ) X 𝓛 , 𝓡 ( 0 ) ) = 0
U 𝓛 , 𝓡 X 1 + V 𝓛 , 𝓡 X 2 + W 𝓛 , 𝓡 X 3 + D 𝓛 , 𝓡 = 0

Metrics