Abstract

Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar nanostructured metallic objects acting as isolated chiral metaobjects. Our analysis demonstrate how surface plasmons, which are lossy bidimensional electromagnetic waves propagating on top of the structure, can delocalize light information in the just precise way for giving rise to this subtle effect.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. -F.M. Arago, "Memoire sur une modification remarquable qu�??eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d�??optique," Mem. Inst. France Part I, 12 (1811).
  2. L. Pasteur, "Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire," C. R. Acad. Sci. Paris 26, 535-539 (1848).
  3. E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987).
    [PubMed]
  4. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, 2nd ed. (Pergamon, New York, 1984).
    [PubMed]
  5. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
    [CrossRef] [PubMed]
  6. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  8. C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  9. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
    [CrossRef] [PubMed]
  10. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  11. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
    [CrossRef] [PubMed]
  12. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
    [CrossRef]
  13. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  14. B. K. Canfield, S. Kujala1, K. Jefimovs, J. Turunen and M. Kauranen, "Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles," Opt. Express 12, 5418-5423 (2004).
    [CrossRef] [PubMed]
  15. B. K. Canfield, S. Kujala1,K. Laiho1, K. Jefimovs, J. Turunen and M. Kauranen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Opt. Express 12, 5418-5423 (2004).
    [CrossRef] [PubMed]
  16. W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
    [CrossRef]
  17. M. Decker, M. W. Klein, M. Wegener and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
    [CrossRef] [PubMed]
  18. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  19. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef] [PubMed]
  20. J. C. Bose, "On the rotation of plane of polarization of electric waves by a twisted structure." Proc. R. Soc. London A 63, 146-152 (1898).
    [CrossRef]
  21. L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994).
    [CrossRef]
  22. L. D. Barron, "Parity and optical activity," Nature 238, 17-19 (1972).
    [CrossRef] [PubMed]
  23. S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005).
    [CrossRef]
  24. A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
    [CrossRef]
  25. M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
    [CrossRef]
  26. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through a single aperture surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
    [CrossRef] [PubMed]
  27. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  28. F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997).
    [CrossRef]
  29. E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
    [CrossRef]
  30. C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
    [CrossRef]

2007 (4)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

2006 (4)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

2005 (5)

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
[CrossRef]

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (4)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

1997 (1)

F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997).
[CrossRef]

1994 (1)

L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994).
[CrossRef]

1972 (1)

L. D. Barron, "Parity and optical activity," Nature 238, 17-19 (1972).
[CrossRef] [PubMed]

1898 (1)

J. C. Bose, "On the rotation of plane of polarization of electric waves by a twisted structure." Proc. R. Soc. London A 63, 146-152 (1898).
[CrossRef]

1848 (1)

L. Pasteur, "Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire," C. R. Acad. Sci. Paris 26, 535-539 (1848).

1811 (1)

D. -F.M. Arago, "Memoire sur une modification remarquable qu�??eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d�??optique," Mem. Inst. France Part I, 12 (1811).

Alkemade, P. F. A.

Altewischer, E.

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Altewisher, E.

Arago, D. -F. M.

D. -F.M. Arago, "Memoire sur une modification remarquable qu�??eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d�??optique," Mem. Inst. France Part I, 12 (1811).

Bagnall, D. M.

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Barron, L. D.

L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994).
[CrossRef]

L. D. Barron, "Parity and optical activity," Nature 238, 17-19 (1972).
[CrossRef] [PubMed]

Bose, J. C.

J. C. Bose, "On the rotation of plane of polarization of electric waves by a twisted structure." Proc. R. Soc. London A 63, 146-152 (1898).
[CrossRef]

Canfield, B. K.

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Decker, M.

Degiron, A.

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through a single aperture surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through a single aperture surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Genet, C.

C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
[CrossRef]

Hecht, L.

L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

Klein, M. W.

Koch, S. W.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Krasavin, A.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Kujala, S.

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Le Jeune, B.

F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Linden, S.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Moloney, J. V.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Opt, J.

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Pasteur, L.

L. Pasteur, "Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire," C. R. Acad. Sci. Paris 26, 535-539 (1848).

Pendry, J. B.

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Reichelt, M.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Stroucken, T.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

van der drift, and E. W. J. M.

van Exter, M. P.

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
[CrossRef]

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

van Zuuk, A.

Wegener, M.

Woerdman, J. P.

E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
[CrossRef]

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Wright, E. M.

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Zheludev, N. I.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006).
[CrossRef]

Appl. Phys. Let. (1)

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

C. R. Acad. Sci. Paris (1)

L. Pasteur, "Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire," C. R. Acad. Sci. Paris 26, 535-539 (1848).

Chem. Phys. Lett. (1)

L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994).
[CrossRef]

Nano Lett. (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007).
[CrossRef]

Nature (3)

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

L. D. Barron, "Parity and optical activity," Nature 238, 17-19 (1972).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Part (1)

D. -F.M. Arago, "Memoire sur une modification remarquable qu�??eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d�??optique," Mem. Inst. France Part I, 12 (1811).

Phys. Rev. B. (1)

C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005).
[CrossRef]

Phys. Rev. E (1)

S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London A (1)

J. C. Bose, "On the rotation of plane of polarization of electric waves by a twisted structure." Proc. R. Soc. London A 63, 146-152 (1898).
[CrossRef]

Prog. Quantum Electron (1)

F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997).
[CrossRef]

Pure Appl. Opt. (1)

A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Other (2)

E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987).
[PubMed]

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, 2nd ed. (Pergamon, New York, 1984).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Chiral plasmonic metamolecules. On the top panel: scanning electron micrographs of the left (L) and right (R) handed enantiomer (mirror image) planar chiral structures investigated. The scale bar is 3 µm long. The parameters characterizing the structure are the following: hole diameter d=350 nm, film thickness h=310 nm, grating period P=760 nm, groove width w=370 nm, and groove depth s=80 nm. Values for h,w, and s were chosen from the known optimal resonant geometrical properties of circular SP antennas [8]. The structures are milled, with a focus ion beam, in a gold film deposited on a glass substrate. On the bottom panel: transmission spectra at normal incidence of individual left (blue curve) and right handed (red curve) Archimede spirals illuminated from the air side.

Fig. 2.
Fig. 2.

Analysis of the polarization states for an input light with variable linear polarization for both the left (left panel) and right handed (right panel) individual chiral structures of Fig. 1. The data points (acquired with a laser light at λ=780 nm) are compared to the predictions from Eq. (2) (continuous curves) for respectively the transmitted intensity analyzed along the direction: |x〉(green), |y〉 (yellow), |+45°〉 (cyan), |-45°〉 (magenta), |L〉 (red), and |R〉 (blue). The total transmitted intensity is also shown (black). The symmetries between both panel expected from group theory (see appendix D) are observed experimentally. The insets show in each panel the ellipses of polarization and the handedness (arrow) associated with the two corotating eingenstates associated with the Jones matrix ���� (blue) and ���� (red).

Fig. 3.
Fig. 3.

Full polarization tomography. Poincaré sphere of unity radius associated with the input state represented by the Stokes vector X [3, 28]. Also shown are the results of Fig. 2 for the left (blue) and right handed (red) structures if the linearly polarized incident state draw the black circle in the (X 1, X 2) equator plane of the input sphere. Data points are compared with the predictions from ����,�� exp. (continuous curves) and of Eq. (2) (dashed curves).

Fig. 4.
Fig. 4.

Principle of the polarization experiment. (a), Sketch of the optical set up described in the text. The images are recorded by using a CMOS camera. (b), A typical image of the transmitting nanohole showing the Airy spot associated with diffraction by the optical microscope. The scale bar is 2 µm long. (c), Crosscut of the intensity profile along the yellow dotted line shown in (b).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

𝒥 𝓛 th . = ( A B C A ) , 𝒥 𝓛 th . = ( A C B A ) ,
𝒥 𝓛 fit = ( 1.000 0.166 + i 0.221 0.131 + i 0.099 1.000 ) ,
𝒥 𝓡 fit = ( 1.000 0.129 + i 0.098 0.170 + i 0.230 1.000 ) .
𝓜 𝓛 exp . = ( 1.000 0.031 0.107 0.029 0.029 0.958 0.044 0.251 0.105 0.037 0.953 0.287 0.029 0.261 0.282 0.809 ) ,
𝓜 𝓡 exp . = ( 1.000 0.035 0.111 0.023 0.027 0.949 0.051 0.246 0.096 0.034 0.943 0.267 0.011 0.252 0.277 0.745 ) .
𝓜 glass = ( 1.0000 ̲ 0.0060 0.0040 0.0070 0.0030 0.9851 ̲ 0.0010 0.0020 0.0020 0.0020 0.9965 ̲ 0.0030 0.0050 0.0040 0.0030 0.9821 ̲ )
𝓜 𝓛 th . = ( 𝓜 00 th . 𝓜 01 th . 𝓜 02 th . 𝓜 03 th . 𝓜 01 th . 𝓜 11 th . 𝓜 12 th . 𝓜 13 th . 𝓜 02 th . 𝓜 12 th . 𝓜 22 th . 𝓜 23 th . 𝓜 03 th . 𝓜 13 th . 𝓜 23 th . 𝓜 33 th . ) .
B A = 𝓜 01 th . 𝓜 13 th . 𝓜 00 th . + 𝓜 33 th . + i 𝓜 23 th . 𝓜 02 th . 𝓜 00 th . + 𝓜 33 th .
C A = 𝓜 01 th . 𝓜 13 th . 𝓜 00 th . + 𝓜 33 th . + i 𝓜 23 th . + 𝓜 02 th . 𝓜 00 th . + 𝓜 33 th . .
𝓜 𝓛 fit = ( 1.000 0.033 0.116 0.023 0.033 0.951 0.043 0.282 0.116 0.043 0.951 0.304 0.023 0.282 0.304 0.902 ) ,
𝓜 𝓡 fit = ( 1.000 0.0359 0.125 0.026 0.039 0.949 0.044 0.283 0.125 0.044 0.948 0.311 0.026 0.283 0.311 0.897 ) .
Ψ out = 𝓙 ̂ 𝓛 Ψ in
Π ̂ 𝒥 ̂ 𝓛 Π ̂ 1 = 𝒥 ̂ 𝓡 𝒥 ̂ 𝓛
Π ̂ Ψ out = 𝓙 ̂ 𝓡 Π ̂ Ψ in .
i 𝓙 ̂ 𝓛 θ = i 𝓙 ̂ 𝓡 θ ,
I total ( Left ) ( θ ) = I total ( Right ) ( θ ) ,
I x , y ( Left ) ( θ ) = I x , y ( Right ) ( θ ) ,
I ± 45 ° ( Left ) ( θ ) = I 45 ° ( Right ) ( θ ) ,
I L , R ( Left ) ( θ ) = I R , L ( Right ) ( θ ) ,
S 0 = I x + I y , S 1 = I x I y
S 2 = I + 45 ° I 45 ° , S 3 = I L I R ,
( S 𝓛 , 𝓡 ; 0 S 𝓛 , 𝓡 ; 1 S 𝓛 , 𝓡 ; 2 S 𝓛 , 𝓡 ; 3 ) = 𝓜 𝓛 , 𝓡 ( S 0 S 1 S 2 S 3 ) .
X in ( θ ) = ( cos ( 2 θ ) sin ( 2 θ ) 0 ) ,
n 𝓛 , 𝓡 = ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( 2 π 3 ) ) × ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( π 2 ) ) ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( 2 π 3 ) ) × ( X 𝓛 , 𝓡 ( 0 ) X 𝓛 , 𝓡 ( π 2 ) )
n 𝓛 , 𝓡 = ( U 𝓛 , 𝓡 V 𝓛 , 𝓡 W 𝓛 , 𝓡 ) ,
n 𝓛 = ( 0.2845 0.3065 0.9084 ) , n 𝓡 = ( 0.2861 0.3139 0.95053 ) .
n 𝓛 , 𝓡 · ( X 𝓛 , 𝓡 ( θ ) X 𝓛 , 𝓡 ( 0 ) ) = 0
U 𝓛 , 𝓡 X 1 + V 𝓛 , 𝓡 X 2 + W 𝓛 , 𝓡 X 3 + D 𝓛 , 𝓡 = 0

Metrics