Abstract

We experimentally demonstrate a Hong-Ou-Mandel type of two-photon interference effect with a heralded single-photon state and a thermal state. The light sources in the 1550 nm telecom band are generated from two independent dispersion-shifted fibers via four-wave mixing process. The observed visibility is (82±11)%. This type of interference between independent sources is crucial in quantum information process with independent qubits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
    [CrossRef] [PubMed]
  2. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
    [CrossRef] [PubMed]
  3. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
    [CrossRef]
  4. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
    [CrossRef]
  5. C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
    [CrossRef] [PubMed]
  6. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef] [PubMed]
  7. J. Fan, A. Dogariu, and L. J. Wang, "Generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 1530-1532 (2005).
    [CrossRef] [PubMed]
  8. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
    [CrossRef] [PubMed]
  9. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).
  10. H. Takesue, "1.5-um band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204,101 (2007).
    [CrossRef]
  11. J. Fulconis, O. Alibart, J. L. O�??brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120,501 (2007).
    [CrossRef]
  12. J. G. Rarity, P. R. Tapster, and R. Loudon, "Non-classical interference between independent sources," arXiv quant-ph, 9702,032 (1997).
  13. T. B. Pittman and J. D. Franson, "Violation of Bell�??s Inequality with Photons from Independent Sources," Phys. Rev. Lett. 90, 240,401 (2003).
    [CrossRef]
  14. B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
    [CrossRef]
  15. Z. Y. Ou, "Quantum theory of fourth-order interference," Phys. Rev. A 37, 1607-1619 (1988).
    [CrossRef] [PubMed]
  16. Z. Y. Ou and L. Mandel, "Further evidence of nonclassical behavior in optical interference," Phys. Rev. Lett. 62, 2941-2944 (1989).
    [CrossRef] [PubMed]
  17. S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
    [CrossRef] [PubMed]
  18. J. G. Rarity and P. R. Tapster, "Three-particle entanglement from entangled photon pairs and a weak coherent state," Phys. Rev. A 59, R35-R38 (1999).
    [CrossRef]
  19. C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, (IEEE, New York) pp. 175-179 (1984).
    [PubMed]
  20. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, "Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing," Opt. Lett. 33, 593-595 (2008).
    [CrossRef] [PubMed]
  21. B. Yurke and M. Potasek, "Obtainment of thermal noise from a pure quantum state," Phys. Rev. A 36, 3464-3466 (1987).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

H. Takesue, "1.5-um band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204,101 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O�??brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120,501 (2007).
[CrossRef]

2006 (1)

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

2005 (1)

2004 (2)

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

2003 (2)

T. B. Pittman and J. D. Franson, "Violation of Bell�??s Inequality with Photons from Independent Sources," Phys. Rev. Lett. 90, 240,401 (2003).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

1999 (1)

J. G. Rarity and P. R. Tapster, "Three-particle entanglement from entangled photon pairs and a weak coherent state," Phys. Rev. A 59, R35-R38 (1999).
[CrossRef]

1998 (1)

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

1991 (1)

S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
[CrossRef] [PubMed]

1989 (1)

Z. Y. Ou and L. Mandel, "Further evidence of nonclassical behavior in optical interference," Phys. Rev. Lett. 62, 2941-2944 (1989).
[CrossRef] [PubMed]

1988 (1)

Z. Y. Ou, "Quantum theory of fourth-order interference," Phys. Rev. A 37, 1607-1619 (1988).
[CrossRef] [PubMed]

1987 (2)

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

B. Yurke and M. Potasek, "Obtainment of thermal noise from a pure quantum state," Phys. Rev. A 36, 3464-3466 (1987).
[CrossRef] [PubMed]

1986 (1)

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O�??brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120,501 (2007).
[CrossRef]

Bjork, G.

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Chen, J.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Collett, M. J.

S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
[CrossRef] [PubMed]

Cui, L.

Dogariu, A.

Duan, L. M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Fan, J.

Franson, J. D.

T. B. Pittman and J. D. Franson, "Violation of Bell�??s Inequality with Photons from Independent Sources," Phys. Rev. Lett. 90, 240,401 (2003).
[CrossRef]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O�??brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120,501 (2007).
[CrossRef]

Hessmo, B.

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

Heydari, H.

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Kumar, P.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Lee, K. F.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

Li, X.

Liang, C.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

Mandel, L.

Z. Y. Ou and L. Mandel, "Further evidence of nonclassical behavior in optical interference," Phys. Rev. Lett. 62, 2941-2944 (1989).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Ou, Z. Y.

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, "Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing," Opt. Lett. 33, 593-595 (2008).
[CrossRef] [PubMed]

Z. Y. Ou and L. Mandel, "Further evidence of nonclassical behavior in optical interference," Phys. Rev. Lett. 62, 2941-2944 (1989).
[CrossRef] [PubMed]

Z. Y. Ou, "Quantum theory of fourth-order interference," Phys. Rev. A 37, 1607-1619 (1988).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

Pan, J. W.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Pittman, T. B.

T. B. Pittman and J. D. Franson, "Violation of Bell�??s Inequality with Photons from Independent Sources," Phys. Rev. Lett. 90, 240,401 (2003).
[CrossRef]

Potasek, M.

B. Yurke and M. Potasek, "Obtainment of thermal noise from a pure quantum state," Phys. Rev. A 36, 3464-3466 (1987).
[CrossRef] [PubMed]

Rarity, J. G.

J. G. Rarity and P. R. Tapster, "Three-particle entanglement from entangled photon pairs and a weak coherent state," Phys. Rev. A 59, R35-R38 (1999).
[CrossRef]

Sharping, J.

Takesue, H.

H. Takesue, "1.5-um band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204,101 (2007).
[CrossRef]

Tan, S. M.

S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
[CrossRef] [PubMed]

Tapster, P. R.

J. G. Rarity and P. R. Tapster, "Three-particle entanglement from entangled photon pairs and a weak coherent state," Phys. Rev. A 59, R35-R38 (1999).
[CrossRef]

Usachev, P.

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

Voss, P. L.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

Walls, D. F.

S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
[CrossRef] [PubMed]

Wang, L. J.

Weinfurter, H.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Yang, L.

Yu, D.

Yurke, B.

B. Yurke and M. Potasek, "Obtainment of thermal noise from a pure quantum state," Phys. Rev. A 36, 3464-3466 (1987).
[CrossRef] [PubMed]

Zeilinger, A.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

H. Takesue, "1.5-um band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204,101 (2007).
[CrossRef]

Nature (3)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (4)

B. Yurke and M. Potasek, "Obtainment of thermal noise from a pure quantum state," Phys. Rev. A 36, 3464-3466 (1987).
[CrossRef] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052,301 (2006).

Z. Y. Ou, "Quantum theory of fourth-order interference," Phys. Rev. A 37, 1607-1619 (1988).
[CrossRef] [PubMed]

J. G. Rarity and P. R. Tapster, "Three-particle entanglement from entangled photon pairs and a weak coherent state," Phys. Rev. A 59, R35-R38 (1999).
[CrossRef]

Phys. Rev. Lett. (8)

Z. Y. Ou and L. Mandel, "Further evidence of nonclassical behavior in optical interference," Phys. Rev. Lett. 62, 2941-2944 (1989).
[CrossRef] [PubMed]

S. M. Tan, D. F. Walls, and M. J. Collett, "Nonlocality of a single photon," Phys. Rev. Lett. 66, 252-255 (1991).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O�??brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120,501 (2007).
[CrossRef]

T. B. Pittman and J. D. Franson, "Violation of Bell�??s Inequality with Photons from Independent Sources," Phys. Rev. Lett. 90, 240,401 (2003).
[CrossRef]

B. Hessmo, P. Usachev, H. Heydari, and G. Bjork, "Experimental Demonstration of Single Photon Nonlocality," Phys. Rev. Lett. 92, 180,401 (2004).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891-3894 (1998).
[CrossRef]

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef] [PubMed]

Other (2)

J. G. Rarity, P. R. Tapster, and R. Loudon, "Non-classical interference between independent sources," arXiv quant-ph, 9702,032 (1997).

C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, (IEEE, New York) pp. 175-179 (1984).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

The experimental setup. FPC, fiber polarization controller; PBS, polarization beam splitter; F, filter; Att, attenuator; SPD, single photon detector.

Fig. 2.
Fig. 2.

Three-fold coincidence rate versus the position of the translation stage when the average photon number per pulse of (signal1) thermal field is about (a) 0.26 and (b) 0.38. Three-fold background coincidences of 47 and 40 counts/40min are subtracted from the data in (a) and (b), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a ̂ D 1 = ( a ̂ 1 + a ̂ 2 ) 2
a ̂ D 2 = ( a ̂ 1 a ̂ 2 ) 2
a D 1 ( t ) a D 2 ( t ) a D 2 ( t ) a D 1 ( t ) = 1 4 ( a 1 ( t ) a 1 ( t ) a 1 ( t ) a 1 ( t ) + a 2 ( t ) a 2 ( t ) a 2 ( t ) a 2 ( t )
+ a 1 ( t ) a 2 ( t ) a 2 ( t ) a 1 ( t ) + a 2 ( t ) a 1 ( t ) a 1 ( t ) a 2 ( t )
a 2 ( t ) a 1 ( t ) a 2 ( t ) a 1 ( t ) a 1 ( t ) a 2 ( t ) a 1 ( t ) a 2 ( t ) )
= 1 4 ( 2 n ¯ 2 + 2 n ¯ 2 n ¯ I 12 )

Metrics