Abstract

We present an integration platform based on quantum well intermixing for multi-section hybrid silicon lasers and electroabsorption modulators. As a demonstration of the technology, we have fabricated discrete sampled grating DBR lasers and sampled grating DBR lasers integrated with InGaAsP/InP electroabsorption modulators. The integrated sampled grating DBR laser-modulators use the as-grown III–V bandgap for optical gain, a 50 nm blue shifted bandgap for the electrabosprtion modulators, and an 80 nm blue shifted bandgap for low loss mirrors. Laser continuous wave operation up to 45 °C is achieved with output power >1.0 mW and threshold current of <50 mA. The modulator bandwidth is >2GHz with 5 dB DC extinction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  2. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
    [CrossRef] [PubMed]
  3. S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
    [CrossRef]
  4. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322, (2007).
    [CrossRef]
  5. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, "Distributed Feedback Silicon Evanescent Laser," OFC/NFOEC, postdeadline session PDP15, 2008.
  6. V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
    [CrossRef]
  7. E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
    [CrossRef]
  8. E. Skogen, "Quantum Well Intermixing for Wavelength Agile Photonic Integrated Circuits," PhD. Thesis University of California Santa Barbara, (2003).
  9. D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
    [CrossRef]
  10. H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Pannicia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector," Opt. Express 15, 13539-13546 (2007).
    [CrossRef] [PubMed]
  11. M-C Amann, J. Buus, Tunable Laser Diodes (Artech House 1998).
  12. M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, "Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser," Opt. Express 15, 15041-15046 (2007).
    [CrossRef] [PubMed]
  13. M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
    [CrossRef]
  14. Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, "A hybrid silicon evanescent electroabsorption modulator," OFC 2008, San Diego, CA, (2008).

2007

2005

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

2002

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

1993

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

1989

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

Amann, M-C

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

Barton, J. S.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

Bowers, J. E.

Chin, M. K.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Chuang, Z.

V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Cohen, O.

Coldren, L. A.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Denbaars, S. P.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

Djie, H. S.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Fang, A. W.

Illek, S.

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

Jayaraman, V

V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Jones, R.

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Kuo, Y.-H.

Lombardo, S.

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Mei, T.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Nie, D.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Paniccia, M.

Paniccia, M. J.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322, (2007).
[CrossRef]

Pannicia, M. J.

Park, H.

Raday, O.

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, "Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser," Opt. Express 15, 15041-15046 (2007).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322, (2007).
[CrossRef]

Rong, H.

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Schanen, C.

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

Skogen, E. J.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

Sysak, M. N.

Tang, X. H.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Thulke, W.

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

Wang, Y. X.

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

M-C Amann, S. Illek, C. Schanen, and W. Thulke, "Tunable twin-guide laser: A novel aser diode with improved tuning performance," Appl. Phys. Lett. 54, 2532-2533 (1989).
[CrossRef]

IEEE J. Quantum Electron.

V , Jayaraman, Z. Chuang, and L. A. Coldren, "Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

J. Sel. Top. Quantum Electron.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A Quantum-Well-Intermixing Process for Wavelength-Agile Photonic Integrated Circuits," J. Sel. Top. Quantum Electron. 8, 863-869 (2002).
[CrossRef]

J. Vac. Sci. Technol. B

D. Nie, T. Mei, H. S. Djie, M. K. Chin, X. H. Tang, and Y. X. Wang, "Implementing multiple bandgaps using inductively coupled argon plasma enhanced quantum well intermixing," J. Vac. Sci. Technol. B 23,1050-1053 (2005).
[CrossRef]

Nat. Mater.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Nature

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Opt. Express

Other

Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, "A hybrid silicon evanescent electroabsorption modulator," OFC 2008, San Diego, CA, (2008).

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, "Distributed Feedback Silicon Evanescent Laser," OFC/NFOEC, postdeadline session PDP15, 2008.

M-C Amann, J. Buus, Tunable Laser Diodes (Artech House 1998).

E. Skogen, "Quantum Well Intermixing for Wavelength Agile Photonic Integrated Circuits," PhD. Thesis University of California Santa Barbara, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Overview of the QWI process used for the hybrid laser. The three bandgaps realized are numbered 1, 2, and 3. (a). Implantation of P into InP buffer with SiNx mask to preserve the as-grown bandgap. (b). Diffusion of vacancies through QWs and barriers via RTA for bandgap 2. (c). Removal of InP buffer layer to halt intermixing. (d). Diffusion of vacancies via RTA for bandgap 3. (e). Removal of InP buffer layer and InGaAsP stop etch layer.

Fig. 2.
Fig. 2.

(a). Photoluminescence peak shift in implanted and implant-protected regions for a fixed RTA time of 240s and RTA temperatures between 675 and 775 °C. (b). PL shift as a function of anneal time for III–V regions that have been protected from the implant, partially intermixed with the InP buffer layer removed, and fully intermixed at 725 °C. (c). Normalized PL spectra from the three bandgaps utilized in the SGDBR-EAM devices.

Fig. 3.
Fig. 3.

Schematic of patterned III–V after pre-bonding fabrication. Discrete bandgaps are numbered 1, 2, and 3. Patterns do not vary in the vertical direction.

Fig. 4.
Fig. 4.

Schematic and cross section of patterned SOI wafer with waveguides. Patterns do not vary in the horizontal direction.

Fig 5.
Fig 5.

(a). Cross section of active region (Bandgap 1 PL=1520 nm). (b) EAM cross section with narrow 4 µm III–V mesa to reduce capacitance (Bandgap 2 PL=1470 nm). (c) Passive region cross section with intermixed quantum wells (Bandgap 3 PL=1440 nm).

Fig. 6.
Fig. 6.

Cut away of a hybrid silicon SGDBR-EAM shown with four front mirror and back mirror grating bursts. Proton implantation is used for electrical isolation between various laser sections. The active, modulator, and passive bandgaps are labeled 1, 2, and 3, respectively.

Fig. 7.
Fig. 7.

Output power-gain current-gain voltage measurement results for SGDBR at stage temperatures from 10–35°C.

Fig. 8.
Fig. 8.

Contour map of fiber coupled SGDBR spectra as a function of gain current. Stage temperature is held fixed at 25 °C and front and rear mirrors are unbiased.

Fig. 9.
Fig. 9.

Spectra from SGDBR tuned to three supermodes. Gain section bias is 140 mA with backside temperature of 25 °C. Front and rear mirror tuning currents for lasing at 1501, 1507.5, and 1514 nm are 20 and 0 mA, 0 and 0 mA, and 0 and 20 mA.

Fig. 10.
Fig. 10.

Output power-gain current measurement results for SGDBR at stage temperatures from 10–45 °C.

Fig. 11.
Fig. 11.

Spectra from SGDBR tuned to four supermodes. Gain bias is 140 mA and stage temperature is 25 °C. Front and rear mirror currents for lasing at 1512, 1518, 1524 and 1554 nm are 20 and 0 mA, 0 and 0 mA, 0 and 20 mA, and 50 and 0 mA.

Fig. 12.
Fig. 12.

DC extinction characteristics of integrated electroabsorption modulators in the SGDBR-EAM with a 2.5 µm wide Si waveguide.

Fig. 13.
Fig. 13.

Electrical to optical small signal response of integrated electroabsorption modulators in the SGDBR-EAM with a 2.5 µm wide Si waveguide.

Metrics