Abstract

Surface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler to excite surface plasmon polaritons (SPP), and the other forming a plasmonic band gap for the propagating SPPs. In the vicinity of the band edges, localized surface plasmons are formed. These localized plasmons strongly enhance the scattering efficiency of the Raman signal emitted on the metallic grating surfaces. It was shown that reproducible Raman scattering enhancement factors of over 105 can be achieved by fabricating biharmonic SERS templates using soft nano-imprint technique. We have shown that the SERS activities from these templates are tunable as a function of plasmonic resonance conditions. Similar enhancement factors were also measured for directional emission of photoluminescence. At the wavelengths of the plasmonic absorption peak, directional enhancement by a factor of 30 was deduced for photoluminescence measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Schatz, M. A. Young, and R. P. Van Duyne, "Electromagnetic mechanism of SERS," in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19-45.
  2. E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
    [CrossRef]
  3. K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
    [CrossRef]
  4. A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998).
    [CrossRef]
  5. W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002).
    [CrossRef]
  6. M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
    [CrossRef]
  7. A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
    [CrossRef]
  8. M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  9. M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
    [CrossRef]
  10. M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver," Appl. Opt. 19, 3253 (1980).
    [CrossRef] [PubMed]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  12. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
    [CrossRef]
  13. F. J. GarciaVidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
    [CrossRef]
  14. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  15. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
    [CrossRef]
  16. K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).
  17. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
    [CrossRef]
  18. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
    [CrossRef] [PubMed]
  19. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
    [CrossRef] [PubMed]
  20. N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
    [CrossRef]
  21. I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
    [CrossRef]
  22. M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
    [CrossRef]
  23. W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
    [CrossRef]
  24. A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
    [CrossRef]
  25. A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
    [CrossRef]
  26. A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
    [CrossRef]
  27. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]
  28. P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984).
    [CrossRef]
  29. Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
    [CrossRef] [PubMed]
  30. N. F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, "Enhancement and tunability of active plasmonic by multilayer grating coupled emission," Opt. Express 15, 11608-11615 (2007).
    [CrossRef] [PubMed]
  31. E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
    [CrossRef]
  32. J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
    [CrossRef]
  33. Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006).
    [CrossRef]

2008

A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

2007

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
[CrossRef] [PubMed]

N. F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, "Enhancement and tunability of active plasmonic by multilayer grating coupled emission," Opt. Express 15, 11608-11615 (2007).
[CrossRef] [PubMed]

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

2006

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
[CrossRef] [PubMed]

2005

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
[CrossRef]

2004

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

2002

K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
[CrossRef]

W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002).
[CrossRef]

2000

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

1999

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

1998

A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1996

F. J. GarciaVidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
[CrossRef]

1995

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

1994

A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
[CrossRef]

1985

M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1984

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984).
[CrossRef]

1982

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

1980

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Aydinli, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Baltog, I.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Bjerneld, E. J.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

Bosnick, K. A.

K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
[CrossRef]

Brus, L. E.

K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Bumm, L. A.

Campion, A.

A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998).
[CrossRef]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Charlton, M. D. B.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
[CrossRef] [PubMed]

Chiu, N. F.

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Coutaz, J. L.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

de Abajo, F. J. G.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Doering, W. E.

W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002).
[CrossRef]

Emery, S. R.

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Emory, S. R.

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Fernandez, U.

A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
[CrossRef]

Fujii, M.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
[CrossRef] [PubMed]

Girlando, A.

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

Harrison, G. R.

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

Hayashi, S.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984).
[CrossRef]

Hsu, C. F.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jiang, J.

K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
[CrossRef]

Johansson, P.

M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
[CrossRef]

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

Kahl, M.

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

Kall, M.

M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
[CrossRef]

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

Kambhampati, P.

A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998).
[CrossRef]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Kerker, M.

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver," Appl. Opt. 19, 3253 (1980).
[CrossRef] [PubMed]

Kiang, Y. W.

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Knoll, W.

A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
[CrossRef]

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

Kocabas, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Kuan, C. H.

Lee, C. K.

Lee, J. H.

Lin, C. W.

Liu, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Liu, N. W.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Mahnkopf, S.

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Mochizuki, Y.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
[CrossRef] [PubMed]

Nakamura, T.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

Nemetz, A.

A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
[CrossRef]

Netti, C. M.

Netti, M. C.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Nie, S. M.

W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002).
[CrossRef]

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nien, S. Y.

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Perney, N. M. B.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
[CrossRef] [PubMed]

Philpott, M. R.

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Primeau, N.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

Reinisch, R.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Schatz, G. C.

A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
[CrossRef]

Senlik, S. S.

A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Siiman, O.

Stockburger, M.

P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984).
[CrossRef]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Svedberg, F.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

Swalen, J. D.

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

Takeda, E.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

Tang, A.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Van Duyne, R. P.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

VanDuyne, R. P.

A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
[CrossRef]

Voges, E.

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

Wang, D. S.

Wang, H. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Wang, J. K.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Wang, J. Y.

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Wang, Y.

Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Wang, Y. L.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Wu, K. C.

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Xu, H. X.

M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
[CrossRef]

Yang, C. C.

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Yu, C.

Zhou, Z. P.

Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006).
[CrossRef]

Zoorob, M. E.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006).
[CrossRef] [PubMed]

Acc. Chem. Res.

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

Adv. Mater.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006).
[CrossRef]

Chem. Rev.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999).
[CrossRef]

Chem. Soc. Rev

A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998).
[CrossRef]

Chimia

K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).

J. Am. Chem. Soc.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

J. Appl. Phys.

E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007).
[CrossRef]

A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994).
[CrossRef]

J. Chem. Phys.

W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982).
[CrossRef]

J. Phys. Chem.

P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984).
[CrossRef]

J. Phys. Chem. A

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004).
[CrossRef]

J. Phys. Chem. B

K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002).
[CrossRef]

W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

J. Raman Spectrosc.

M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005).
[CrossRef]

Nano Lett.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007).
[CrossRef]

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996).
[CrossRef]

A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Phys. Rev. Lett.

F. J. GarciaVidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Science

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Other

G. C. Schatz, M. A. Young, and R. P. Van Duyne, "Electromagnetic mechanism of SERS," in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19-45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) 2D AFM image of biharmonic metallic surface includes Λ1=500 nm and Λ2=250 nm gratings. First periodicity is designed to excite the SPP’s. Second one generates backscattering for propagating SPP’s and opens up a photonic band gap. (b) Line profile of AFM image. (c) Power spectrum of AFM image indicating two different harmonic components.

Fig. 2.
Fig. 2.

Schematic diagram for replication and transfer of the grating structure onto the polymeric surface using the elastomeric stamp (PDMS); (a) Biharmonic master grating template was prepared using interference lithography, (b) the template was prepared by pouring liquid PDMS on the master grating and then cured at 75 °C for 2 h. (c) After the curing procedure, the elastomeric stamp was peeled from the master grating, (d) and then, placed on the pre-polymer (OG146) coated wafer (e) where the pre-polymer was exposed to UV light. (f) Finally, the elastomeric stamp was mechanically removed from the wafer.

Fig. 3.
Fig. 3.

Reflectivity spectra for biharmonic gratings coated with metallic film a) Ag and b) Au. Simulation results for electric field distributions on a biharmonic metallic grating structure illuminated with the wavelength of c) λ- and d) λ+, respectively. λ- localizes on the troughs, while λ+ localizes on the peaks of the periodic structure.

Fig. 4.
Fig. 4.

Experimental dispersion diagrams for a) biharmonic and b) uniform grating structures.

Fig. 5.
Fig. 5.

SERS spectrum of 10-6 M R6G spectrum taken from the bihormonic surface coated with Au metal with an integration time of 1s (Red curve). Green curve represents the normal incidence reflectivity of biharmonic plasmonic template. Inset shows the molecular structure of R6G molecule.

Fig. 6.
Fig. 6.

(a) Resonance absorption spectra of biharmonic metallic gratings with different grating strength. (b) Corresponding SERS spectra for each resonance conditions (Background subtracted and spectra are all shifted for a better view).

Fig. 7.
Fig. 7.

Normal incidence PL spectrum of biharmonic metallic grating coated with silicon rich silicon nitride. Red curve represents the plasmonic absorption and green curve shows the PL spectrum. There is 30 times enhancement in PL signal at wavelengths coinciding with the plasmonic resonance wavelengths. Brown curve indicates 10 times magnified broad band emission spectrum of silicon rich silicon nitride film on the flat Si surface.

Metrics