Abstract

We demonstrate a stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short periodically-poled lithium niobate (PPLN) waveguide. Full quantum state tomographic measurement performed on the photon-pairs has revealed a very high state purity of 0.94, and an entanglement fidelity exceeding 0.96 at the low-rate-regime. At higher rates, entanglement quality degrades due to emission of multiple-pairs. Using a new model, we have confirmed that the observed degradation is largely due to double- and triple-pair emissions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. A. K. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  3. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
    [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  5. M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
    [CrossRef]
  6. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  7. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
    [CrossRef] [PubMed]
  8. J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, "Active polarization stabilization in optical fibers suitable for quantum key distribution," Opt. Express 15, 17928-17936 (2007).
    [CrossRef] [PubMed]
  9. G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008).
    [CrossRef] [PubMed]
  10. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  11. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  12. H. Takesue and K. Inoue, "1.5-um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  13. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef] [PubMed]
  14. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
    [CrossRef]
  15. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
    [CrossRef]
  16. M. Pelton, P. Marsden, D. Ljunggren, M. Tenger, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004).
    [CrossRef] [PubMed]
  17. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldeback, M. Tengner, D. Ljunggren, and A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks," Opt. Express 15, 6926-6933 (2007).
    [CrossRef] [PubMed]
  18. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007).
    [CrossRef] [PubMed]
  19. J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  20. S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
    [CrossRef]
  21. O. Kuzucu and F. N. C. Wong, "Pulsed Sagnac source of narrow-band polarization-entangled photons," Phys. Rev. A 77, 032314 (2008).
    [CrossRef]
  22. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  23. B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
    [CrossRef]

2008 (2)

2007 (6)

2006 (1)

2005 (2)

H. Takesue and K. Inoue, "1.5-um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

2004 (3)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

M. Pelton, P. Marsden, D. Ljunggren, M. Tenger, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

2002 (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

1999 (1)

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

1998 (1)

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1984 (1)

B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
[CrossRef]

Albert-Seifried, S.

Alibart, O.

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Bethea, C. G.

B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
[CrossRef]

Blauensteiner, B.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Campbell, J. C.

B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
[CrossRef]

Canalias, C.

Chen, J.

Cirac, J. I.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

De Micheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

A. K. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fragemann, A.

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Honjo, T.

Hubel, H.

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

Inoue, K.

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Kamada, H.

Karlsson, A.

Kumar, P.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, "Pulsed Sagnac source of narrow-band polarization-entangled photons," Phys. Rev. A 77, 032314 (2008).
[CrossRef]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Laurell, F.

Lederer, T.

Lee, K. F.

Legre, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Levine, B. F.

B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
[CrossRef]

Li, X.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Li, Y.

Liang, C.

Ljunggren, D.

Lorunser, T.

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Marsden, P.

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Nishida, Y.

O???Brien, J. L.

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Odate, S.

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Pelton, M.

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Plenio, M. B.

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Poppe, A.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Sauge, S.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Swillo, M.

Tadanaga, O.

Takesue, H.

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Temporao, G. P.

Tenger, M.

Tengner, M.

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Tsuchida, H.

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Vanner, M. R.

Vedral, V.

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Vilela de Faria, G.

von der Weid, J. P.

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Waldeback, J.

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, "Pulsed Sagnac source of narrow-band polarization-entangled photons," Phys. Rev. A 77, 032314 (2008).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Wu, E.

Wu, G.

Xavier, G. B.

Yoshizawa, A.

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Zeilinger, A.

Zeng, H.

Contemp. Phys. (1)

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Electron. Lett. (3)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

B. F. Levine, C. G. Bethea, and J. C. Campbell, "Near room temperature 1.3μm single photon counting with InGaAs avalanche diode," Electron. Lett. 20, 596-598 (1984).
[CrossRef]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "PPLN waveguide for quantum communication," Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Opt. Express (7)

S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldeback, M. Tengner, D. Ljunggren, and A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks," Opt. Express 15, 6926-6933 (2007).
[CrossRef] [PubMed]

H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
[CrossRef] [PubMed]

J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, "Active polarization stabilization in optical fibers suitable for quantum key distribution," Opt. Express 15, 17928-17936 (2007).
[CrossRef] [PubMed]

G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008).
[CrossRef] [PubMed]

M. Pelton, P. Marsden, D. Ljunggren, M. Tenger, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5-um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (4)

O. Kuzucu and F. N. C. Wong, "Pulsed Sagnac source of narrow-band polarization-entangled photons," Phys. Rev. A 77, 032314 (2008).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
[CrossRef]

Phys. Rev. Lett. (5)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O�??Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(color online) Schematic of the proposed source. Red arrows show input pump pulses having a center wavelength of 776 nm. Black arrows show telecom-band photon-pairs created in the waveguide. ATT: attenuator, HWP: half-wave plate, PBS: polarization beam-splitter, PMF: polarization-maintaining fiber, PPLN: periodically-poled lithium niobate waveguide, QWP: quarter-wave plate, SMF: single-mode fiber

Fig. 2.
Fig. 2.

(color online) Schematic of the experiment. BPF: band-pass filter, DM: dichroic mirror, PC: polarization controller, POL: polarizer, SPCM: single-photon counter module

Fig. 3.
Fig. 3.

(color online) Density matrix reconstructed from quantum state tomographic measurements without subtracting accidental coincidences.

Fig. 4.
Fig. 4.

Experiment results showing how purity (black circles) and entanglement fidelity (white circles) decrease with increasing photon-pair generation rate. The number of coincidence counts observed in 1 second for the HH polarization setting (squares) is also shown. Solid line is linear fit.

Fig. 5.
Fig. 5.

Decrease of two-photon interference fringe visibility with increasing photon-pair generation rate for the H/V basis. Black circles are experimental results. The broken curve is theoretical result that includes double-pair contributions but omits triple-pairs. The solid curve includes triple-pair contributions.

Fig. 6.
Fig. 6.

(color online) Diagram for counting the double-pair contribution to coincidence count rates when the polarizers of both channels are aligned parallel (red ovals encircling HH) and perpendicular (blue ovals encircling HV). The leftmost set of squares indicates the various ways that photons could be lost. Double-headed arrows indicate polarization-entanglement. It should be noted that although we illustrate the counting method here for H/V basis, it is in principle valid for any other bases.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P ( μ , n ) = μ n e μ n ! ,
s i = ( 1 e p i μ 2 ) F + d i ,
C max = p 2 2 P ( μ , 1 ) F + p 2 4 ( 6 4 p + p 2 ) P ( μ , 2 ) F + ( 3 + 33 4 p 1 p ) p 2 ( 1 p ) 4 P ( μ , 3 ) F + C acc
C min = p 2 2 P ( μ , 2 ) F + ( 3 2 + 21 4 p 1 p ) p 2 ( 1 p ) 4 P ( μ , 3 ) F + C acc
C acc = s 1 d 2 + s 2 d 1 d 1 d 2 F .
V = C max C min C max + C min
C max p 2 2 P ( μ , 1 ) F + 3 p 2 2 P ( μ , 2 ) F + C acc ,
s i p μ 2 F + d i .
μ 1 + 3 2 μ e μ 2 ( s 1 d 1 ) ( s 2 d 2 ) F ( C max C acc ) ,
μ H 1 + μ V + 2 μ H e μ H + μ V ( s 1 H d 1 ) ( s 2 H d 2 ) F ( C HH C acc HH ) ,
μ V 1 + μ H + 2 μ V e μ H + μ V ( s 1 V d 1 ) ( s 2 V d 2 ) F ( C VV C acc VV ) ,
C H H = p 1 H p 2 H e ( μ H + μ V ) μ H [ 1 + μ V + ( p 1 H 2 ) ( p 2 H 2 ) μ H 2 ] F + C acc HH ,
C H V = p 1 H p 2 V e ( μ H + μ V ) μ H μ V F + C acc H V ,
C acc H H = ( s 1 H d 2 + s 2 H d 1 d 1 d 2 ) F ,
C acc H V = ( s 1 H d 2 + s 2 V d 1 d 1 d 2 ) F .

Metrics