Abstract

We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377 (1908).
    [CrossRef]
  2. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
    [CrossRef]
  3. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  4. L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
    [CrossRef]
  5. G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
    [CrossRef]
  6. J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
    [CrossRef]
  7. M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
    [CrossRef]
  8. H. Krone, "Krone�??s neuer Trocken-Process," Photogr. Corresp. 10, 224 (1873).
  9. M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
    [CrossRef]
  10. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
    [CrossRef] [PubMed]
  11. H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
    [CrossRef]
  12. F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
    [CrossRef] [PubMed]
  13. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623 (2007).
    [CrossRef] [PubMed]
  14. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
    [CrossRef] [PubMed]
  15. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
    [CrossRef] [PubMed]
  16. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
    [CrossRef]
  17. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  18. R. Ruppin, "Surface modes of two spheres," Phys. Rev. B 26, 3440 (1982).
    [CrossRef]
  19. T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
    [CrossRef]
  20. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001).
    [CrossRef]
  21. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
    [CrossRef]
  22. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
    [CrossRef]
  23. K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
    [CrossRef]
  24. J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
    [CrossRef]
  25. E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003).
    [CrossRef]
  26. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
    [CrossRef]
  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
    [CrossRef]
  28. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
    [CrossRef] [PubMed]
  29. U. Kreibig, and M. Vollmer, Optical Properties of Noble Metal Clusters, (Springer, 1995).
  30. T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
    [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley and Sons, 1998).
  32. P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
    [CrossRef] [PubMed]
  33. Minimum gap width 5 nm. The data points at d / D = 1.6, 3, and 4 stem from unexposed dimers of 50 nm particle diameter and gap widths of 80, 150, and 200, respectively.
  34. C. Hafner, Post-modern Electromagnetics: Using intelligent MaXwell solvers, (Wiley and Sons, 1999).
  35. C. Hafner, MaX-1. A visual electromagnetics platform for PCs, (Wiley and Sons, 1999).
  36. P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  37. T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
    [CrossRef]
  38. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, "Plasmons in nearly touching metallicnanoparticles: singular repsonse in the limit of touching dimers," Opt. Express 14, 9988 (2006).
    [CrossRef] [PubMed]

2008

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

2007

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
[CrossRef] [PubMed]

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623 (2007).
[CrossRef] [PubMed]

2006

H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
[CrossRef]

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, "Plasmons in nearly touching metallicnanoparticles: singular repsonse in the limit of touching dimers," Opt. Express 14, 9988 (2006).
[CrossRef] [PubMed]

2005

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
[CrossRef]

2004

T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

2003

E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

2002

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

2001

2000

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

1999

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

1997

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

1982

R. Ruppin, "Surface modes of two spheres," Phys. Rev. B 26, 3440 (1982).
[CrossRef]

1972

P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1908

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377 (1908).
[CrossRef]

1873

H. Krone, "Krone�??s neuer Trocken-Process," Photogr. Corresp. 10, 224 (1873).

Agio, M.

Aizpurua, J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Alaverdyan, Y.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Boyen, H.-G.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Brandt, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Csaki, A.

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Eng, L. M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Festag, G.

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Fritzsche, W.

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

Fukuoka, T.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Hao, E.

E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003).
[CrossRef]

Härtling, T.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Hartmann, C.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Hernandez, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Herzog, T.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Huang, J. P.

J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
[CrossRef] [PubMed]

Jensen, T.

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

Johansson, P.

M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kabius, B.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Käll, M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Kaminski, F.

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

Kelly, L.

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

Kimura, K.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Kottmann, J. P.

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Krieger, M.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Krone, H.

H. Krone, "Krone�??s neuer Trocken-Process," Photogr. Corresp. 10, 224 (1873).

Kullock, R.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

Lal, S.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Lazarides, A.

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Levin, C. S.

H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Li, Z.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

Lu, L.

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

Maekita, W.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Martin, O. J. F.

Mie, G.

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377 (1908).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

Mock, J. J.

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Möller, M.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Möller, R.

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

Mori, Y.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Mössmer, S.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Nakajima, K.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Nordlander, P.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Olk, P.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Renger, J.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

Rogobete, L.

Romero,

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, "Surface modes of two spheres," Phys. Rev. B 26, 3440 (1982).
[CrossRef]

Sandoghdar, V.

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003).
[CrossRef]

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

Schultz, S.

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Smith, D. R.

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

Spatz, J. P.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Steinbrück, A.

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

Su, K. H.

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Sun, G.

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

Suzuki, M.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Svedberg, F.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

Wada, Y.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

Wang, H.

H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
[CrossRef]

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

Wenzel, M. T.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Xi, S.

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

Xiao, J. J.

J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
[CrossRef]

Xu, H.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Yu, K. W.

J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
[CrossRef]

Zhang, H.

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

Zhang, X.

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

Ziemann, P.

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

Ann. Phys.

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377 (1908).
[CrossRef]

Appl. Phys. Lett.

M. Suzuki, W. Maekita, Y. Wada, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, "In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy," Appl. Phys. Lett. 88, 203121 (2006).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826 (2002).
[CrossRef]

J. Am. Chem. Soc.

H. Wang, C. S. Levin, and N. J. Halas, "Nanosphere arrays with controlled sub-10nm-gaps as surface-enhanced Raman spectroscopy substrates," J. Am. Chem. Soc. 127, 14992 (2006).
[CrossRef]

J. Chem. Phys.

E. Hao, and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2003).
[CrossRef]

J. Clust. Sci.

T. Jensen, L. Kelly, and A. Lazarides, G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. 10, 295 (1999).
[CrossRef]

J. Phys. Chem C

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, "Photochemical tuning of plasmon resonances in single gold nanoparticles," J. Phys. Chem C 112, 4920 (2008).
[CrossRef]

J. Phys. Chem. B

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079 (2005).
[CrossRef]

J. Raman

M. Käll, H. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. RamanSpec. 36, 510 (2005).
[CrossRef]

Langmuir

L. Lu, G. Sun, S. Xi, H. Wang, and H. Zhang, "A colloidal templating method to hollow bimetallic nanostructures," Langmuir 19, 3074 (2003).
[CrossRef]

J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, "Ordered deposition of inorganic clusters from micellar block copolymer films," Langmuir 16, 407 (2000).
[CrossRef]

Nano Lett.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimers," Nano Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandt, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935 (2003).
[CrossRef]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two particle enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance dependent tuning of two coupled metal nanoparticles," Nano Lett. 8, 1174 (2008).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2004).
[CrossRef]

K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 3227 (2007).
[CrossRef] [PubMed]

Nanotechnology

G. Festag, A. Steinbrück, A. Csaki, R. Möller, and W. Fritzsche, "Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth," Nanotechnology 18, 015502 (2007).
[CrossRef]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Photogr. Corresp.

H. Krone, "Krone�??s neuer Trocken-Process," Photogr. Corresp. 10, 224 (1873).

Phys. Rev. B

J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B 71, 045404 (2005).
[CrossRef]

P. B. Johnson, and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

R. Ruppin, "Surface modes of two spheres," Phys. Rev. B 26, 3440 (1982).
[CrossRef]

Phys. Rev. E

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Science

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics (Wiley and Sons, 1998).

Minimum gap width 5 nm. The data points at d / D = 1.6, 3, and 4 stem from unexposed dimers of 50 nm particle diameter and gap widths of 80, 150, and 200, respectively.

C. Hafner, Post-modern Electromagnetics: Using intelligent MaXwell solvers, (Wiley and Sons, 1999).

C. Hafner, MaX-1. A visual electromagnetics platform for PCs, (Wiley and Sons, 1999).

U. Kreibig, and M. Vollmer, Optical Properties of Noble Metal Clusters, (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the photochemical metal deposition. Upon laser illumination @ 532 nm, 1 mW, dissolved tetrachloroaureate complexes are reduced to pure gold. The gold disks fabricated by EBL act as catalysts for the reaction, and the agglomeration of the gold atoms at the particle surface leads to the optically induced growth.

Fig. 2.
Fig. 2.

Scheme of the experimental setup used for photochemical growth and in-situ monitoring of single Au nanoparticle pairs. With the flip mirror removed from the beam path, the sample is exposed to a focused 532-nm laser beam initiating the growth process. Flipping the mirror back directs a white light beam into the setup which is focused onto the back focal plane of the objective. It thus impinges on the Au nanoparticle sample as a collimated beam. The backscattering signal is then collected in a confocal detection path.

Fig. 3.
Fig. 3.

Evolution of the LSP resonance during the growth process for the center-to-center particle axis (column I), as well as perpendicular to it (column II). Column III: SEM images of the dimer in the respective growth state. The length of the scale bar is 100 nm.

Fig. 4.
Fig. 4.

Resonance wavelength λ of the LSP mode oscillating perpendicularly to the center-to-center axis of the dimer for increasing particle diameter (red triangles). As a comparison, the evolution of the resonance wavelength λres during the growth of single particles fabricated in the same way as the dimers is shown (black squares). Note that λ and λres show the same linear dependence on the disk diameter.

Fig. 5.
Fig. 5.

(a). Ratio Δλ indicating the relative shift of the resonance wavelength during particle growth vs. gap/diameter (squares). The exponential decay fit to the data according to Eq. (1) is plotted as a solid line. (b) Calculated data (squares) and their exponential fit (solid line) with parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ 0 = a exp ( d b D ) ,
d = l 0 κ 1 + κ with κ = b ln ( Δ λ a λ ) .

Metrics