Abstract

We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007).
    [CrossRef] [PubMed]
  2. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
    [CrossRef]
  3. M. E Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  4. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
    [CrossRef] [PubMed]
  5. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003).
    [CrossRef] [PubMed]
  6. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005).
    [CrossRef]
  7. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A 24, 1901-1910 (2007).
    [CrossRef]
  8. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
    [CrossRef] [PubMed]
  9. P. Puvanathasan and K. Bizheva, "Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set," Opt. Express 15, 15747-15758 (2007).
    [CrossRef] [PubMed]
  10. J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002).
    [CrossRef] [PubMed]
  11. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
    [CrossRef]
  12. A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
    [CrossRef] [PubMed]
  13. V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996).
    [CrossRef] [PubMed]
  14. S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
    [CrossRef] [PubMed]
  15. X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
    [CrossRef] [PubMed]
  16. P. Kovesi, Phase Preserving Denoising of Images. The Australian Pattern Recognition Society Conference: DICTA'99. 212-217. 1999. Perth, WA.
  17. M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
    [CrossRef] [PubMed]
  18. T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
    [CrossRef]
  19. J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
    [CrossRef] [PubMed]
  20. Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
    [CrossRef] [PubMed]
  21. D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006).
    [CrossRef]
  22. R. C Gonzalez and R. E Woods, Digital Image Processing (Prentice Hall, 2002).
  23. W. K Pratt, Digital Image Processing (John Wiley and Sons, Inc., 2001).
    [CrossRef]
  24. M Sonka, V Hlavac, and R Boyle, Image Processing: Analysis and Machine Vision (Brooks and Cole Publishing, 1998).
  25. Zhang Fan, Mo Yoo Yang, Mong Koh Liang, and Kim Yongmin, "Nonlinear Diffusion in Laplacian Pyramid Domain for Ultrasonic Speckle Reduction," IEEE Trans. Med. Imaging. 26, 200-211 (2007).
    [CrossRef]
  26. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
    [CrossRef] [PubMed]
  27. J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
    [CrossRef] [PubMed]
  28. A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001).
    [CrossRef] [PubMed]
  29. The Visualization Handbook (Elsevier Academic Press, 2005).
  30. B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
    [CrossRef]
  31. D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
    [CrossRef]
  32. J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
    [CrossRef]
  33. Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
    [CrossRef]
  34. Stalling, D , Hege, H. C , and Zockler, M.  Amira- An Advanced 3D Visualization and Modeling System. http://amira.zib.de, 2007. http://amira.zib.de.
  35. H. Ghassan, H. Judith, DTMRI Segmentation using DT-Snakes and DT-Livewire. Signal Processing and Information Technology, 2006 IEEE International Symposium on. Signal Processing and Information Technology, 2006 IEEE International Symposium on, 513-518, (2006).
  36. E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998).
    [CrossRef]
  37. M. Demirci, "Matlab Image-Processing Toolbox," Computer 27, 106-107 (1994).
  38. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, NJ 1990).
  39. A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
    [CrossRef]
  40. C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
    [CrossRef]
  41. P. Suetens, Fundamentals of Medical Imaging (Cambridge University Press, 2002).
  42. P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
    [CrossRef]
  43. A. L. Drishti; Volume Exploration and Presentation Tool([0.1.7. 2007). Ref Type: Computer Program
  44. E.W. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik 1, 269-271 (1959).
    [CrossRef]
  45. V. Perlibakas, "Automatical detection of face features and exact face contour," Pattern. Recogn. Lett. 24, 2977-2985 (2003).
    [CrossRef]
  46. T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
    [CrossRef]
  47. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
    [CrossRef]
  48. T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
    [CrossRef]
  49. T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
    [CrossRef]
  50. M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, "Phenotyping transgenic embryonic murine hearts using optical coherence tomography," Appl. Opt. 46, 1776-1781 (2007).
    [CrossRef] [PubMed]
  51. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006).
    [CrossRef] [PubMed]
  52. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, "In vivo gated 4D imaging of the embryonic heart using optical coherence tomography," J. Biomed. Opt. 12, 030505 (2007).
    [CrossRef] [PubMed]

2007 (6)

2006 (5)

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
[CrossRef] [PubMed]

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006).
[CrossRef]

2005 (1)

2004 (2)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
[CrossRef] [PubMed]

2003 (3)

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

V. Perlibakas, "Automatical detection of face features and exact face contour," Pattern. Recogn. Lett. 24, 2977-2985 (2003).
[CrossRef]

2002 (3)

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
[CrossRef]

J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002).
[CrossRef] [PubMed]

2001 (5)

A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
[CrossRef] [PubMed]

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
[CrossRef] [PubMed]

A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001).
[CrossRef] [PubMed]

C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
[CrossRef]

T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
[CrossRef]

2000 (1)

1999 (3)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
[CrossRef] [PubMed]

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

1998 (2)

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998).
[CrossRef]

1996 (1)

V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996).
[CrossRef] [PubMed]

1995 (1)

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

1994 (2)

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

M. Demirci, "Matlab Image-Processing Toolbox," Computer 27, 106-107 (1994).

1991 (1)

J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
[CrossRef] [PubMed]

1990 (1)

P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

1989 (1)

T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
[CrossRef]

1959 (1)

E.W. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik 1, 269-271 (1959).
[CrossRef]

Achim, A.

A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
[CrossRef] [PubMed]

Adler, D. C.

Allan, P. L.

T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
[CrossRef]

Atsumi, H.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Barrett, W. A.

E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998).
[CrossRef]

Basavanhally, A. N.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, "In vivo gated 4D imaging of the embryonic heart using optical coherence tomography," J. Biomed. Opt. 12, 030505 (2007).
[CrossRef] [PubMed]

Bashkansky, M.

Beeston, C.

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

Belding, J.

Bezerianos, A.

A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
[CrossRef] [PubMed]

Bilenca, A.

Bizheva, K.

Boppart, S. A.

Bouma, B. E.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002).
[CrossRef] [PubMed]

Chambolle, A.

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

Chan, C. S.

C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
[CrossRef]

Chang, C. C.

C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
[CrossRef]

Chauhan, R. C.

S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
[CrossRef] [PubMed]

Chughtai, O. Q.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, "In vivo gated 4D imaging of the embryonic heart using optical coherence tomography," J. Biomed. Opt. 12, 030505 (2007).
[CrossRef] [PubMed]

Clark, J. W.

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

Cooper, D. H.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

Cootes, T. F.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
[CrossRef]

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

Croitoru, M. M.

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

Csebfalvi, B.

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

Demirci, M.

M. Demirci, "Matlab Image-Processing Toolbox," Computer 27, 106-107 (1994).

Deng, H.

Desjardins, A. E.

Devore, R. A.

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

Dijkstra, E.W.

E.W. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik 1, 269-271 (1959).
[CrossRef]

Dutt, V.

V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996).
[CrossRef] [PubMed]

Ebert, D. S.

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

Edwards, G. J.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
[CrossRef]

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

Efimov, I. R.

Esenaliev, R. O.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Frangakis, A. S.

A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gao, S. K.

X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
[CrossRef] [PubMed]

Gao, X. R.

X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
[CrossRef] [PubMed]

Gargesha, M.

Gerig, G.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Graham, J.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

Greenleaf, J. F.

V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996).
[CrossRef] [PubMed]

Groller, E.

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

Gupta, S.

S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
[CrossRef] [PubMed]

Hansen, C.

J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
[CrossRef]

Hao, X. H.

X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
[CrossRef] [PubMed]

Haslam, J.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

Hauser, H.

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

Hegerl, R.

A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001).
[CrossRef] [PubMed]

Heng, P. A.

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

Hill, A.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Hsiao, J. Y.

C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
[CrossRef]

Hu, Z.

Huber, R.

Jenkins, M. W.

Jiang, Y. F.

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

Kholodnykh, A. I.

Kikinis, R.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Kindlmann, G.

J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
[CrossRef]

Kniss, J.

J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
[CrossRef]

Koller, T.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Konig, A.

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

Kutay, M. A.

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
[CrossRef] [PubMed]

Larin, K. V.

Lee, N. Y.

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Loupas, T.

T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
[CrossRef]

Lucier, B. J.

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

Malik, J.

P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

Marks, D. L.

Mcdicken, W. N.

T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
[CrossRef]

Montano, M. M.

Morris, C. J.

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

Mortensen, E. N.

E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998).
[CrossRef]

Motamedi, M.

Mroz, L.

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

Nakajima, S.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Nikolski, V. P.

Ozcan, A.

Patel, P.

Perlibakas, V.

V. Perlibakas, "Automatical detection of face features and exact face contour," Pattern. Recogn. Lett. 24, 2977-2985 (2003).
[CrossRef]

Perona, P.

P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

Petropulu, A. P.

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
[CrossRef] [PubMed]

Petrova, I. Y.

Piccoli, C. W.

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
[CrossRef] [PubMed]

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Puvanathasan, P.

Qiu, T. S.

D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006).
[CrossRef]

Ralston, T. S.

Reintjes, J.

Rheingans, P.

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

Rogowska, J.

J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002).
[CrossRef] [PubMed]

Rollins, A. M.

Rothenberg, F.

Roy, D.

Sato, Y.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Sexana, S. C.

S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
[CrossRef] [PubMed]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

Taylor, C. J.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
[CrossRef]

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

Tearney, G. J.

Theeuwes, A. G. M.

J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
[CrossRef] [PubMed]

Thijssen, J. M.

J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
[CrossRef] [PubMed]

Tsakalides, P.

A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
[CrossRef] [PubMed]

Tsui, H. T.

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

Vakoc, B. J.

Verhoeven, J. T. M.

J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

Watanabe, M.

Wilson, D. L.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Xie, J.

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

Yoo, T. S.

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

Yoshida, S.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Yue, Y.

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Zha, D. F.

D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006).
[CrossRef]

Zwischenberger, J. B.

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Computer (1)

M. Demirci, "Matlab Image-Processing Toolbox," Computer 27, 106-107 (1994).

Computer Vision and Image Understanding (1)

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995).
[CrossRef]

Graphical Models and Image Processing (1)

E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (2)

A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998).
[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging. (5)

Zhang Fan, Mo Yoo Yang, Mong Koh Liang, and Kim Yongmin, "Nonlinear Diffusion in Laplacian Pyramid Domain for Ultrasonic Speckle Reduction," IEEE Trans. Med. Imaging. 26, 200-211 (2007).
[CrossRef]

Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006).
[CrossRef] [PubMed]

A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001).
[CrossRef] [PubMed]

V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996).
[CrossRef] [PubMed]

X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001).
[CrossRef]

P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001).
[CrossRef] [PubMed]

IEEE. Transactions on Visualization and Computer Graphics (2)

D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002).
[CrossRef]

J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002).
[CrossRef]

Image and Vision Computing (1)

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994).
[CrossRef]

International Journal of Adaptive Control and Signal Processing (1)

D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006).
[CrossRef]

J. Biomed. Opt. (3)

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, "In vivo gated 4D imaging of the embryonic heart using optical coherence tomography," J. Biomed. Opt. 12, 030505 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Struct. Biol. (1)

A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001).
[CrossRef] [PubMed]

Medical & Biological Engineering & Computing (1)

S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004).
[CrossRef] [PubMed]

Numerische Mathematik (1)

E.W. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik 1, 269-271 (1959).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Pattern. Recogn. Lett. (1)

V. Perlibakas, "Automatical detection of face features and exact face contour," Pattern. Recogn. Lett. 24, 2977-2985 (2003).
[CrossRef]

Phys. Med. Biol. (1)

J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002).
[CrossRef] [PubMed]

Proceedings (2)

C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001).
[CrossRef]

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999).
[CrossRef]

Trans. Circuits Syst. (1)

T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989).
[CrossRef]

Ultrason. Imaging (1)

J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991).
[CrossRef] [PubMed]

Other (13)

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997).
[CrossRef]

Stalling, D , Hege, H. C , and Zockler, M.  Amira- An Advanced 3D Visualization and Modeling System. http://amira.zib.de, 2007. http://amira.zib.de.

H. Ghassan, H. Judith, DTMRI Segmentation using DT-Snakes and DT-Livewire. Signal Processing and Information Technology, 2006 IEEE International Symposium on. Signal Processing and Information Technology, 2006 IEEE International Symposium on, 513-518, (2006).

P. Suetens, Fundamentals of Medical Imaging (Cambridge University Press, 2002).

J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, NJ 1990).

The Visualization Handbook (Elsevier Academic Press, 2005).

B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001).
[CrossRef]

M. E Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

P. Kovesi, Phase Preserving Denoising of Images. The Australian Pattern Recognition Society Conference: DICTA'99. 212-217. 1999. Perth, WA.

R. C Gonzalez and R. E Woods, Digital Image Processing (Prentice Hall, 2002).

W. K Pratt, Digital Image Processing (John Wiley and Sons, Inc., 2001).
[CrossRef]

M Sonka, V Hlavac, and R Boyle, Image Processing: Analysis and Machine Vision (Brooks and Cole Publishing, 1998).

A. L. Drishti; Volume Exploration and Presentation Tool([0.1.7. 2007). Ref Type: Computer Program

Supplementary Material (2)

» Media 1: AVI (3198 KB)     
» Media 2: AVI (301 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Kovesi NW filtering for shot noise reduction. The image is convolved with a filter bank after Fourier transformation. The result is transformed back to the spatial domain by an inverse Fourier transformation. A noise threshold is identified in each scale and the filtered image is produced by reconstruction.

Fig. 2.
Fig. 2.

Proposed optimization scheme for shot noise reduction based on the Kovesi NW filter. The resulting filter is called the Optimized Non-orthogonal Wavlet (ONW) filter. In ONW, a user-defined ROI is matched against a co-located ROI in the smallest scale reconstruction to compute an image dissimilarity measure. The parameters that generate the wavelet filter bank are varied through empirically determined ranges to minimize this dissimilarity measure.

Fig. 3.
Fig. 3.

Laplacian Pyramid Nonlinear Diffusion (LPND) technique for speckle reduction of Fan et al. The image is decomposed into constituent images spanning different frequency bands (referred to as layers). A nonlinear diffusion step is applied in each layer to reduce speckle and the output image is reconstructed from the speckle-reduced images in each layer.

Fig. 4.
Fig. 4.

The parameter optimization scheme used in adaptive LPND (ALPND) technique. The filter kernel size N used to compute gradients for nonlinear diffusion and the diffusion threshold td are iterated through a set of values in an empirically determined range and a quantitative figure of merit μ is evaluated at each step. The optimal values for td and N are determined by maximizing μ.

Fig. 5.
Fig. 5.

ONW technique applied to OCT images of quail embryo (a-c) from (2D + time) data set and colon crypt pattern (d-f). (a) Original image of day 2 quail embryo, (b) Denoised image using the basic Kovesi NW filter, (c) Denoised image using ONW, (d) Original image of colon crypt pattern, (e) Denoised image using the basic Kovesi NW filter, and (f) Denoised image using ONW.

Fig. 6.
Fig. 6.

ALPND technique applied to quail embryo OCT images (a) ONW filtered image from Fig. 5(c), (b) Result of basic LPND filtering of Fan et al. applied to the image in (a), (c) Result of proposed ALPND technique applied to the image in (a).

Fig. 7.
Fig. 7.

Visual and quantitative comparison of filtered images obtained by applying various noise reduction techniques to image in (a). (b) Median filter, (c) Wiener filter, (d) The OW filter using wdencmp function from the MATLAB® Wavelet ToolboxTM, (e) the basic Kovesi NW filter, and (f) proposed ONW-ALPND technique. (g) Quantitative comparison of figure of merit of ONW-ALPND filter with median, Wiener, OW and the basic Kovesi NW filters.

Fig. 8.
Fig. 8.

(3.19 MB) A (2D + time) movie of original (noisy) and ONW-ALPND denoised data from the (2D + time) data set of the stage 13 quail embryo. [Media 1]

Fig. 9.
Fig. 9.

Comparison of volume renderings of one phase of the cardiac cycle from the (3D + time) data set before (a) and after (b) ONW-ALPND denoising. Volume renderings were produced using the Drishti visualization software. An isosurface for a gray level value of 60 from both noisy (c) and denoised (d) data. In (e), (301 KB) a movie is shown of the time series of original (left) and denoised (right) volumes corresponding to a complete heartbeat [Media 2]. Figures (f) – (i) show an en face 2D image slice from a different data set - the single volume 3D data set of quail embryo. The noisy image appears in (f) and the ONW-ALPND denoised image is shown in (h). It is clear that outpocketings from the endocardium (red arrows) are more clearly visible after ONW-ALPND denoising. Figures (g) and (i) show the result of the Amira tolerance based seeded region growing tool applied to (f) and (h) respectively for segmenting the cardiac jelly (red region).

Fig. 10.
Fig. 10.

Quantitative comparison of LiveWire segmentation with human tracings using ONW-ALPND and OW filters on 90 images from the (2D + time) data set. (a) Method used for contour comparison. Scatter plots of contour distance measure (section 3.3) are shown in (b) comparing noisy data with ONW-ALPND denoised data where 64% of the images showed closer conformity of proposed technique to human tracings, and in (c) comparing OW filter denoised data with ONW-ALPND denoised data where 60% of the images showed closer conformity to human tracings.

Fig. 11.
Fig. 11.

Quantitative comparison of LiveWire segmentation on the single volume 3D data set consisting of 131 2D image slices corresponding to different spatial positions within the volume. Scatter plots of contour distance measure (section 3.3) have been plotted. (a) Comparison of contours obtained from noisy data with those obtained from ONW-ALPND where 60% of images showed closer conformity of proposed technique to human tracings, (b) Comparison of ONW-ALPND with OW filter where 65% of images showed closer conformity of proposed technique to human tracings.

Fig. 12.
Fig. 12.

Quantitative comparison of LiveWire segmentation to human tracings with and without shot noise reduction (ONW). Scatter plots of contour distance measure (section 3.3) have been plotted. (a) Results from the (2D + time) data set consisting of 90 images from one cardiac cycle of quail heart (where shot noise reduction helped in only 53% of the total images). (b) Results from single volume 3D data set consisting of 131 2D images from one time point of the cardiac cycle (where shot noise reduction helped in only 47% of the total images).

Fig. 13.
Fig. 13.

Multi-resolution volume interaction on a single volume of quail embryonic heart from the (3D + time) data set. From a low resolution volume rendering of the heart, a region of interest can be selected (shown by bounding box) for higher resolution viewing.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( λ , R b , R a ) = arg min x , y Ω , λ min λ λ max , R g min R g R g max , R a min R a R a max D [ h ss x y λ R g R a , I x y ]
μ = ω 1 . CNR + ω 2 . β + ω 3 . SSIM
t d N = arg max t d min t d t d min , N min N N max μ t d N

Metrics