Abstract

We report on the implementation of metal nanoparticles as probes for scattering and apertureless near-field optical investigations in the mid-infrared (mid-IR) spectral regime. At these wavelengths, an efficient electric-field confinement is necessary and achieved here through a gold metal nanoparticle of 80 nm in diameter (Au80-MNP) acting as the optical antenna. The Au80-MNP is attached to a standard AFM cantilever used as the spatial manipulator. When approached to a sample surface while being illuminated with an infrared beam, the Au80-MNP produces a considerably improved spatial confinement of the electric field compared to an ordinary scattering AFM tip. We demonstrate here the confinement normal to the sample surface by making use of a sample-induced phonon polariton resonance in a ferroelectric lithium niobate sample. Our experimental findings are in very good agreement with the quasistatic dipole model and show improved optical resolution via well-selected antenna particles.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Synge, "A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region," Philos. Mag. 6, 356-362 (1928).
  2. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
    [CrossRef] [PubMed]
  3. D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  4. B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999).
    [CrossRef]
  5. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning near-field optical probe with ultrasmall spot size," Opt. Lett. 20, 970-972 (1995).
    [CrossRef] [PubMed]
  6. R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
    [CrossRef]
  7. Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000).
    [CrossRef]
  8. F. Keilmann, "Vibrational-infrared near-field microscopy," Vib. Spectrosc. 29, 109-114 (2002).
    [CrossRef]
  9. R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near-field optical microscope based on local perturbation of a diffraction spot," Opt. Lett. 20, 1924-1926 (1995).
    [CrossRef] [PubMed]
  10. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  11. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
    [CrossRef] [PubMed]
  12. F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
    [CrossRef] [PubMed]
  13. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  14. M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002).
    [CrossRef] [PubMed]
  15. Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006).
    [CrossRef] [PubMed]
  16. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
    [CrossRef] [PubMed]
  17. S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
    [CrossRef]
  18. J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
    [CrossRef]
  19. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
    [CrossRef]
  20. M. T. Wenzel, P. Olk, T. Härtling, and L. M. Eng, "Fabrication of highly reproducible and well characterized scattering scanning near-field (s-SNOM) probes based on colloidal gold nanoparticles," manuscript in preparation (2008).
  21. T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
    [CrossRef]
  22. L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
    [CrossRef]
  23. A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967)
    [CrossRef]
  24. D. Lide, CRC Handbook of Chemistry and Physics 73th Edition (CRC Press Inc., Boca Rato, FL, USA, 1992) pp. 12-137.
  25. I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
    [CrossRef]
  26. S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
    [CrossRef]
  27. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
    [CrossRef] [PubMed]
  28. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
    [CrossRef] [PubMed]
  29. T. Härtling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007).
    [CrossRef] [PubMed]
  30. S. C. Schneider, "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics," PhD thesis, Technische Universität Dresden, Germany (2007).
  31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
    [CrossRef] [PubMed]

2008 (2)

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

2007 (3)

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

T. Härtling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007).
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

2006 (2)

Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

2005 (2)

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
[CrossRef]

2002 (3)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

F. Keilmann, "Vibrational-infrared near-field microscopy," Vib. Spectrosc. 29, 109-114 (2002).
[CrossRef]

M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

2000 (3)

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

1999 (2)

B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999).
[CrossRef]

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

1997 (1)

I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
[CrossRef]

1995 (3)

1994 (1)

1991 (1)

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

1984 (1)

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

1972 (1)

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

1967 (1)

A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967)
[CrossRef]

1928 (1)

E. H. Synge, "A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region," Philos. Mag. 6, 356-362 (1928).

Adam, P.-M.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Albrecht, T. R.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

Ash, E. A.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Bachelot, R.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near-field optical microscope based on local perturbation of a diffraction spot," Opt. Lett. 20, 1924-1926 (1995).
[CrossRef] [PubMed]

Barchiesi, D.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Barker, A. S.

A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967)
[CrossRef]

Bijeon, J.-L.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Billot, L.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Boccara, A. C.

Bouhelier, A.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Cebula, M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

Chang, S.-H.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Deckert, V.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Dyba, M.

M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002).
[CrossRef] [PubMed]

Eng, L. M.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

T. Härtling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
[CrossRef]

Fokas, C.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

Gleyzes, P.

Grafström, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
[CrossRef]

Gray, S. K.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Grütter, P.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

Härtling, T.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

T. Härtling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

Hecht, B.

Hell, S. W.

M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
[CrossRef] [PubMed]

Helm, M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

Hillenbrand, R.

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Horne, D.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Kehr, S. C.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

F. Keilmann, "Vibrational-infrared near-field microscopy," Vib. Spectrosc. 29, 109-114 (2002).
[CrossRef]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999).
[CrossRef]

Kim, Z. H.

Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999).
[CrossRef]

Lamy de la Chapelle, M.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Leone, S. R.

Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

Lindell, I.

I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
[CrossRef]

Loudon, R.

A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967)
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Mieth, O.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Nicholls, G.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Nikoskinen, K.

I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
[CrossRef]

Novotny, L.

Olk, P.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

Pohl, D.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Pohl, D. W.

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Reichenbach, P.

Renger, J.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

Rogers, J. A.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Royer, P.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Rugar, D.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Schaller, N.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

Schneider, S.

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

Schneider, S. C.

S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
[CrossRef]

Seidel, J.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

Stehr, D.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

Suh, Y. D.

Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000).
[CrossRef]

Synge, E. H.

E. H. Synge, "A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region," Philos. Mag. 6, 356-362 (1928).

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Viljanen, A.

I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
[CrossRef]

Wenzel, M. T.

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

Wichmann, J.

Wickramasinghe, H.

F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Wiederrecht, G. P.

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

Winnerl, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Zenobi, R.

Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000).
[CrossRef]

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

Adv. Mater. (1)

Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007).
[CrossRef]

L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006).
[CrossRef]

IEE Proc. Sci. Meas. Technol. (1)

I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997).
[CrossRef]

J. Appl. Phys. (1)

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991).
[CrossRef]

J. Microsc. (2)

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999).
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

Nano Lett. (2)

P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007).
[CrossRef] [PubMed]

P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008).
[CrossRef] [PubMed]

Nature (2)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Opt. Commun. (2)

B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Philos. Mag. (1)

E. H. Synge, "A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region," Philos. Mag. 6, 356-362 (1928).

Phys. Rev. (1)

A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967)
[CrossRef]

Phys. Rev. B (2)

S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005).
[CrossRef]

J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008)
[CrossRef] [PubMed]

Science (1)

F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

F. Keilmann, "Vibrational-infrared near-field microscopy," Vib. Spectrosc. 29, 109-114 (2002).
[CrossRef]

Other (3)

S. C. Schneider, "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics," PhD thesis, Technische Universität Dresden, Germany (2007).

D. Lide, CRC Handbook of Chemistry and Physics 73th Edition (CRC Press Inc., Boca Rato, FL, USA, 1992) pp. 12-137.

M. T. Wenzel, P. Olk, T. Härtling, and L. M. Eng, "Fabrication of highly reproducible and well characterized scattering scanning near-field (s-SNOM) probes based on colloidal gold nanoparticles," manuscript in preparation (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Pyramidal AFM cantilever tip carrying a gold metal nanoparticle of 80 nm in diameter (Au80-MNP), seen from the bottom (sample side). (a)Schematic drawing of the cantilever with the Au-MNP tip. The nanoparticle resides on a tiny triangular platform at the apex of the pyramidal AFM tip. The gold metal nanoparticle provides highly localized optical scattering when interacting with the optical near field of the sample. (b)Scanning electron micrograph (SEM) displayed in SE (topographic) contrast showing the AFM tip apex with the platform to which the Au80-MNP is attached. The platform itself has an extension of about 250 nm (see dashed lines). The particle effectively constitutes the foremost part of the AFM tip. (c)SEM image of the Au80-MNP tip using the backscattered-electron detector. Due to the elemental contrast provided by this detector the attached spherical Au-MNP appears as a bright spot in contrast to silicon.

Fig. 2.
Fig. 2.

Schematic of the tip-sample configuration, with the gold nanoparticle (yellow) as the lowest part of the oscillating AFM tip (blue). The infrared beam (red) impinges at an incident angle of 20° with respect to the sample surface. Note that the size of the AFM tip pyramid is on the order of the infrared wavelength λ = 12.55…14.4 μm. Hence, the pyramid acts as an antenna, in particular for p-polarized light, for which the incident electric field Einc is mainly oriented along the tip axis. z denotes the physical distance between the tip and the sample (violet). Description of the configuration within the dipole model: The Au-MNP tip acquires a dipole moment Ptip which induces a mirror dipole Psample in the sample. Here the p-polarized case is shown. Einc denotes the electric field incident with wave vector kinc , while ksca describes the backscattered wave vector. In the dipole model the variable h in units of the tip radius r describes the distance between the effective position of the tip dipole and the sample surface.

Fig. 3.
Fig. 3.

Amplitude of the third harmonic 3fcant of the scattering signal as a function of tip-sample distance (approach measurement) and of the wavelength λ, displayed for s and p polarization each for both theory (a,b) and experiment (c-f). For every wavelength, the far-field background was subtracted from the data sets. Also, the data were normalized to the incident power, to the detector sensitivity and to the beam splitter transmissivity and reflectivity. All six graphs were normalized to their respective maximum signal and refer to the same logarithmic intensity scale shown at the right border. The first column depicts the calculated third-harmonic amplitude signal for (a) s-polarized and (b) p-polarized light. Data measured with a standard tip are displayed in (c) (s polarization) and (d) (p polarization). (e,f) show the corresponding results obtained with a Au-MNP tip. Note that for s-polarized light the spectral positions of the respective resonances close to the sample surface (z = 0 nm) are identical for the measurements performed with the platinum/iridium-coated standard tip and the Au-MNP tip. Also note that for decreasing z the resonance of the scattering signal shifts towards longer wavelengths for both the Au-MNP tip and the dipole model, while such a shift is hardly observed for the standard tip.

Fig. 4.
Fig. 4.

Normalized amplitude of the third harmonic of the optical signal as a function of the tip-sample distance z (approach measurement) at a fixed wavelength of λ = 13.7 μm for s-polarized light as measured with the platinum/iridium-coated tip (black curve) and the Au80-MNP tip (red curve). With a Au80-MNP the scattering signal is much more concentrated to the sample surface (half width at half maximum (HWHM) of 12 nm) than with a platinum/iridium tip (HWHM of 29 nm). In both cases the maximum signal amplitude is 5 to 10 times higher than the residual signal that is detected when the tip is far away from the sample surface. The absolute value of the scattering signal obtained with the standard tip is 43 % higher than with the Au80-MNP tip (data not shown), while the signal-to-noise ratio is preserved.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α tip 4 π r 3 .
C = k 4 6 π α tip ( 1 + β ) ( 1 β α tip 16 π h 3 ) 1 2
C = k 4 6 π α tip ( 1 + β ) 1 β α tip 16 π h 3 1 2
β = ε s 1 ε s + 1 .

Metrics