Abstract

Cr4+:YAG double-clad crystal fiber with an uniform 10-μm core was fabricated by using a sapphire tube as a heat capacitor to stabilize the power fluctuation of the CO2 laser in the co-drawing laser-heated pedestal growth system. The uniformity of the fiber core showed a factor of 3 improvement compared to that without the use of sapphire tube. The variation of the core diameter is within the ±1.35-degree adiabatic criterion and has a autocorrelation length of 1.7 mm. The measured propagation loss is only 0.02 dB/cm. The sapphire tube also reduces the vertical temperature gradient during the crystal fiber growth process so the 10-μm crystal core exhibits a smooth perimeter. The sapphire tube assisted system can be applied to the growth of many other optical crystal materials.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible," Prog. Quantum Electron. 26, 287-352 (2002).
    [CrossRef]
  2. Y. Kalisky, "Cr4+-doped crystals: their use as lasers and passive Q switches," Prog. Quantum Electron. 28, 249-303 (2004).
    [CrossRef]
  3. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
    [CrossRef]
  4. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, "Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission," Opt. Lett. 29, 439-441 (2004).
    [CrossRef] [PubMed]
  5. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
    [CrossRef] [PubMed]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  7. Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
    [CrossRef]
  8. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
    [CrossRef]
  9. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  10. D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).
  11. C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
    [CrossRef]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1991).
  13. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994).
    [CrossRef]
  14. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
    [CrossRef]
  15. C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001).
    [CrossRef]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]

2006 (2)

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible," Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

2001 (1)

C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001).
[CrossRef]

1997 (1)

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

1994 (1)

F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1991 (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

1969 (1)

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Birks, T. A.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Byer, R. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

Chang, T. Y.

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, J. C.

Chuang, C. Y.

Fan, P. L.

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Fejer, M. M.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Hsu, J. M.

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, K. Y.

Huang, S. L.

Ji, J. Y.

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

Kalisky, Y.

Y. Kalisky, "Cr4+-doped crystals: their use as lasers and passive Q switches," Prog. Quantum Electron. 28, 249-303 (2004).
[CrossRef]

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Lai, C. C.

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
[CrossRef] [PubMed]

Lan, C. W.

C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001).
[CrossRef]

Lee, C. T.

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lin, Y. S.

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
[CrossRef] [PubMed]

Lo, C. Y.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

Marcuse, D.

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994).
[CrossRef]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sennaroglu, A.

A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible," Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Shen, P.

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

Sheu, L. G.

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Tu, C. Y.

C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001).
[CrossRef]

Tu, S. Y.

Wu, M. L.

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Yeh, P. S.

Bell Syst. Tech. J. (1)

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

IEE Proc. J. Optoelecton. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices," IEE Proc. J. Optoelecton. 138, 343-354 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1306-1321 (2006).
[CrossRef]

J. Cryst. Growth (2)

C. W. Lan and C. Y. Tu, "Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals," J. Cryst. Growth 233, 523-536 (2001).
[CrossRef]

Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, "Nanostructures formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal," J. Cryst. Growth 289, 515-519 (2006).
[CrossRef]

J. Lightwave Technol. (2)

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, "Design and analysis of completely adiabatic tapered waveguides by conformal mapping," J. Lightwave Technol. 15, 403-410 (1997).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," Opt. Quantum Electron. 26, 977-986 (1994).
[CrossRef]

Prog. Quantum Electron. (2)

A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible," Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

Y. Kalisky, "Cr4+-doped crystals: their use as lasers and passive Q switches," Prog. Quantum Electron. 28, 249-303 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, "Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers," Rev. Sci. Instrum. 55, 1791-1796 (1984).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a). The schematic of sapphire tube assisted CDLHPG system. (b) The end view and side view of the sapphire tube with fused-silica capillary.

Fig. 2.
Fig. 2.

The left images are the end view and side view of a 10-μm-core Cr4+:YAG DCF. Core diameter variation for fibers fabricated with and without the use of sapphire tube.

Fig. 3.
Fig. 3.

(a). The core diameter profile in the propagation axis. (b) Tapering angles of the fiber fabricated with the use of sapphire tube during LHPG growth meet the 1.35-degree adiabatic criterion.

Fig. 4.
Fig. 4.

The autocorrelation curve of the core diameter for a 10-μm-core DCF.

Fig. 5.
Fig. 5.

The propagation losses of the Cr4+:YAG DCFs with various core diameters.

Fig. 6.
Fig. 6.

Cr4+:YAG DCF cores of (a) 17-μm, (b) 15-μm, and (c) 10-μm diameters without the use of sapphire tube.

Fig. 7.
Fig. 7.

Cr4+:YAG DCF cores of (a) 11-μm, (b) 8.5-μm, and (c) 4-μm diameters with the use of sapphire tube.

Fig. 8.
Fig. 8.

The ASE power measurement of 10-μm-core Cr4+:YAG DCF. The inset shows the ASE spectrum with 265-nm bandwidth.

Fig. 9.
Fig. 9.

The refractive index profile of a 320-μm-diameter Cr4+:YAG DCF.

Fig. 10.
Fig. 10.

(a). The simulation results of mode coupling efficiencies between the SMF28 and the Cr4+:YAG DCF using different signal wavelengths. (b) The measured and simulated insertion losses. The inset shows the measurement scheme.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ω ρ ( β 1 β 2 ) 2 π .

Metrics